Chapter2
TheEuler-Lagrange equation
Inthischapter,wewillgivenecessaryconditionsforanextremumofafunctionofthetype
I(x)=
Z
b
a
F(x(t);x
0
(t);t)dt;
withvarioustypesofboundaryconditions.Thenecessaryconditionisintheformofadierential
equationthattheextremalcurveshouldsatisfy,andthisdierentialequationiscalledtheEuler-
Lagrangeequation.
Webeginwiththesimplesttypeofboundaryconditions,wherethecurvesareallowedtovary
betweentwoxedpoints.
2.1 Thesimplest optimisation problem
Thesimplestoptimisationproblemcanbeformulatedasfollows:
LetF(;;)beafunctionwithcontinuousrstandsecondpartialderivativeswithrespectto
(;;).Thenndx2C
1
[a;b]suchthatx(a)=yaandx(b)=yb,andwhichisanextremumfor
thefunction
I(x)=
Z
b
a
F(x(t);x
0
(t);t)dt: (2.1)
Inotherwords,thesimplestoptimisationproblemconsistsofndinganextremumofafunction
oftheform(2.5),wheretheclassofadmissiblecurvescomprisesallsmoothcurvesjoiningtwo
xedpoints;seeFigure2.1.Wewillapplythenecessaryconditionforanextremum(established
inTheorem1.4.2)tothesolvethesimplestoptimisationproblemdescribedabove.
Theorem2.1.1LetS=fx2C
1
[a;b]jx(a)=yaandx(b)=ybg,andletI:S!Rbea
functionoftheform
I(x)=
Z
b
a
F(x(t);x
0
(t);t)dt:
IfIhasanextremumatx02S,thenx0satisestheEuler-Lagrangeequation:
@F
@
(x0(t);x
0
0(t);t)
d
dt
@F
@
(x0(t);x
0
0(t);t)
=0;t2[a;b]: (2.2)
27
28 Chapter2.TheEuler-Lagrangeequation
PSfragreplacements
a b
t
ya
yb
Figure2.1:Possiblepathsjoiningthetwoxedpoints(a;ya)and(b;yb).
ProofTheproofislongandsowedivideitintoseveralsteps.
Step1.FirstofallwenotethatthesetSisnotavectorspace(unlessya=0=yb)!SoTheorem
1.4.2isnotapplicabledirectly.HenceweintroduceanewlinearspaceX,andconsideranew
function
~
I:X!RwhichisdenedintermsoftheoldfunctionI.
Introducethelinearspace
X=fx2C
1
[a;b]jx(a)=x(b)=0g;
withtheinducednormfromC
1
[a;b].Thenforallh2X,x0+hsatises(x0+h)(a)=yaand
(x0+h)(b)=yb.Dening
~
I(h)=I(x0+h),forh2X,wenotethat
~
I:X!Rhasalocal
extremumat0.ItfollowsfromTheorem1.4.2that
1
D
~
I(0)=0.
Step2.WenowcalculateD
~
I(0).Wehave
~
I(h)
~
I(0)=
Z
b
a
F((x0+h)(t);(x0+h)
0
(t);t)dt
Z
b
a
F(x0(t);x
0
0
(t);t)dt
=
Z
b
a
[F(x0(t)+h(t);x
0
0(t)+h
0
(t);t)dtF(x0(t);x
0
0(t);t)]dt:
RecallthatfromTaylor'stheorem,ifFpossessespartialderivativesoforder2inaballBofradius
raroundthepoint(0;0;0)inR
3
,thenforall(;;)2B,thereexistsa2[0;1]suchthat
F(;;)=F(0;0;0)+
(0)
@
@
+(0)
@
@
+(0)
@
@
F
(0;0;0)
+
1
2!
(0)
@
@
+(0)
@
@
+(0)
@
@
2
F
(0;0;0)+((;;)(0;0;0))
:
Henceforh2Xsuchthatkhkissmallenough,
~
I(h)
~
I(0)=
Z
b
a
dt: (2.3)
Step3.Nextweshowthatifthemapin(2.3)isthezeromap,thenthisimpliesthat(2.2)holds.
Dene
A(t)=
Z
t
a
@F
@
(x0();x
0
0();)d:
Integratingbyparts,wendthat
Z
b
a
@F
@
(x0(t);x
0
0(t);t)h(t)dt=
Z
b
a
A(t)h
0
(t)dt;
andsofrom(2.3),itfollowsthatD
~
I(0)=0impliesthat
Z
b
a
2.2.Calculusofvariations:someclassicalproblems 33
PSfragreplacements
y
x
s
Figure2.4:Elementofarclength.
Hencethetimeofdescentisgivenby
T=
Z
curve
ds
p
2gy
=
1
p
2g
Z
y0
0
v
u
u
t 1+
dx
dy
2
y
dy:
Ourproblemistondthepathfx(y);y2[0;y0]g,satisfyingx(0)=0andx(y0)=x0,which
minimizesT,thatis,todeterminetheminimizerforthefunctionI:S!R,where
I(x)=
1
p
2g
Z
y0
0
isindependentof
,andsotheEuler-Lagrangeequationbecomes
d
dy
x
0
(y)
p
1+(x
0
(y))
2
1
p
y
!
=0:
Integratingwithrespecttoy,weobtain
x
0
(y)
p
1+(x
0
(y))
2
1
p
y
=C;
whereCisaconstant.Itcanbeshownthatthegeneralsolutionofthisdierentialequationis
givenby
x()=
1
2C
2
(sin)+
~
C;y()=
1
2C
2
(1cos);
where
~
Cisanotherconstant.Theconstantsarechosensothatthecurvepassesthroughthepoints
(0;0)and(x0;y0).
PSfragreplacements
(0;0)
(x0;y0)
x
y
Figure2.5:Thecycloidthrough(0;0)and(x0;y0).
Thiscurveisknownasacycloid,andinfactitisthecurvedescribedbyapointPinacircle
thatrollswithoutslippingonthexaxis,insuchawaythatPpassesthrough(x0;y0);seeFigure
2.5.
2
Strictlyspeaking,theFheredoesnotsatisfythedemandsmadeinTheorem2.1.1.Notwithstandingthisfact,
withsomeadditionalargument,thesolutiongivenherecanbefullyjustied.
34 Chapter2.TheEuler-Lagrangeequation
2.2.2 Minim um surface area of rev olution
Theproblemofminimumsurfaceareaofrevolutionistondamongallthecurvesjoiningtwo
givenpoints(x0;y0)and(x1;y1),theonewhichgeneratesthesurfaceofminimumareawhen
rotatedaboutthexaxis.
Theareaofthesurfaceofrevolutiongeneratedbyrotatingthecurveyaboutthexaxisis
S(y)=2
Z
x1
x0
y(x)
p
1+(y
0
(x))
2
dx:
Sincetheintegranddoesnotdependexplicitlyonx,theEuler-Lagrangeequationis
F(y(x);y
0
(x);x)y
0
(x)
@F
@
(y(x);y
0
(x);x)=C;
whereCisaconstant,thatis,
y
p
1+(y
0
)
2
y
(y
0
)
2
p
1+(y
0
)
2
=C:
Thusy=C
p
1+(y
0
)
2
,anditcanbeshownthatthisdierentialequationhasthegeneralsolution
y(x)=Ccosh
2.3.Freeboundaryconditions 35
PSfragreplacements
x0 x1
y0
y1
Figure2.7:Thepolygonalcurve(x0;y0)(x0;0)(x1;0)(x1;y1).
Thisisintuitivelyexpected:imagineasoapbubblebetweenconcentricringswhichare
beingpulledapart.Initiallywegetasoapbubblebetweentheserings,butifthedistance
separatingtheringsbecomestoolarge,thenthesoapbubblebreaks,leavingsoaplmson
eachofthetworings.Thisexampleshowsthatacriticalcurveneednotalwaysexistinthe
classofcurvesunderconsideration.
2.3 Freeboundary conditions
Besidesthesimplestoptimisationproblemconsideredintheprevioussection,wenowconsiderthe
optimisationproblemwithfreeboundaryconditions(seeFigure2.8).
PSfragreplacements
a b
t
Figure2.8:Freeboundaryconditions.
LetF(;;)beafunctionwithcontinuousrstandsecondpartialderivativeswithrespect
to(;;).Thenndx2C
1
[a;b]whichisanextremumforthefunction
I(x)=
Z
b
a
F
x(t);
dx
dt
(t);t
dt: (2.5)
Theorem2.3.1LetI:C
1
[a;b]!Rbeafunctionoftheform
I(x)=
Z
b
a
F
dt;
h2C
1
[a;b].Theorem1.4.2impliesthatthislinearfunctionalmustbethezeromap,thatis,
(DI(x0))(h)=0forallh2C
1
[a;b].Inparticular,itisalsozeroforallhinC
1
[a;b]suchthat
h(a)=h(b)=0.ButrecallthatinStep3andStep4oftheproofofTheorem2.1.1,weproved
thatif
Z
b
a
dt=0 (2.8)
forallhinC
1
[a;b]suchthath(a)=h(b)=0,thenthisimpliesthatheEuler-Lagrangeequation
(2.6)holds.
Step2.Integrationbypartsin(2.8)nowgives
DI(x0)(h)=
Z
b
a
PSfragreplacements
a ab b
ya
yb
tt
Figure2.9:Mixedcases.
Wecansummarizetheresultsbythefollowing:criticalcurvesfor(2.5)satisfytheEuler-
Lagrangeequation(2.6)andmoreoverthereholds
@F
@
(x0(t);x
0
0
(t);t)=0atthefreeendpoint:
Exercises.
1.Findthecurvey=y(x)whichhasminimumlengthbetween(0;0)andthelinex=1.
2.ThecostofamanufacturingprocessinanindustryisdescribedbythefunctionIgivenby
I(x)=
Z
1
0
38 Chapter2.TheEuler-Lagrangeequation
2.4 Generalization
TheresultsinthischaptercanbegeneralizedtothecasewhentheintegrandFisafunctionof
morethanoneindependentvariable:ifwewishtondextremumvaluesofthefunction
I(x1;:::;xn)=
Z
b
a
F
x1(t);:::;xn(t);
dx1
dt
(t);:::;
dxn
dt
(t);t
dt;
whereF(1;:::;n;1;:::;n;)isafunctionwithcontinuouspartialderivativesoforder2,
andx1;:::;xnarecontinuouslydierentiablefunctionsofthevariablet,thenfollowingasimilar
analysisasbefore,weobtainnEuler-Lagrangeequationstobesatisedbytheoptimalcurve,that
is,
@F
@k
(x1(t);:::;xn(t);x
0
1(t);:::;x
0
n(t);t)
d
dt
=0:
Exercise.Findcriticalcurvesofthefunction
I(x1;x2)=
Z
2
0
(x
0
1
(t))
2
+(x
0
2
(t))
2
+2x1(t)x2(t)
dt
suchthatx1(0)=0,x1
2
=1,x2(0)=0,x2
2
=1.
Remark.Notethatwiththeaboveresult,wecanalsosolvetheproblemofndingextremal
curvesforafunctionofthetype
I(x):
Z
b
a
F
x(t);
dx
dt
(t);:::;
d
n
x
dt
n
(t);t
dt;
foroverall(sucientlydierentiable)curvesxdenedonaninterval[a;b],takingvaluesinR.
Indeed,wemayintroducetheauxiliaryfunctions
x1(t)=x(t);x2(t)=
dx
dt
(t);:::;xn(t)=
d
n
x
dt
n
(t);t2[a;b];
andconsidertheproblemofndingextremalcurvesforthenewfunction
~
Idenedby
~
I(x1;:::;xn)=
Z
b
a
F(x1(t);x2(t);:::;xn(t);t)dt:
Usingtheresultmentionedinthissection,wecanthensolvethisproblem.Notethatweeliminated
highorderderivativesatthepriceofconvertingthescalarfunctionintoavector-valuedfunction.
Sincewecanalwaysdothis,thisisoneofthereasonsinfactforconsideringfunctionsofthetype
(1.28)wherenohighorderderivativesoccur.
2.5 Optimisation infunction spacesversusthatinR
n
Tounderstandthebasic`innite-dimensionality'intheproblemsofoptimisationinfunctionspaces,
itisinterestingtoseehowtheyarerelatedtotheproblemsofthestudyoffunctionsofnreal
2.5.OptimisationinfunctionspacesversusthatinR
n
39
variables.Thus,considerafunctionoftheform
I(x)=
Z
b
a
F
x(t);
dx
dt
(t);t
dt;x(a)=ya;x(b)=yb:
Hereeachcurvexisassignedacertainnumber.Tondarelatedfunctionofthesortconsidered
inclassicalanalysis,wemayproceedasfollows.Usingthepoints
a=t0;t1;:::;tn;tn+1=b;
wedividetheinterval[a;b]inton+1equalparts.Thenwereplacethecurvefx(t);t2[a;b]gby
thepolygonallinejoiningthepoints
(t0;ya);(t1;x(t1));:::;(tn;x(tn));(tn+1;yb);
andweapproximatethefunctionIatxbythesum
In(x1;:::;xn)=
n
X
k=1
F