Fast Fourier Transforms, Butterfly structure, DIT, DIF

84 views 31 slides Jul 23, 2024
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

Fast Fourier Transforms, Butterfly structure, DIT, DIF


Slide Content

FAST FOURIER TRANSFORM (FFT) P.ANBARASAN ASST. PROFESSOR/ EEE DEPT

FFT The FFT is an algorithm that efficiently computes the discrete Fourier transform (DFT) k = 0 to N-1 k = 0 to N-1 Twiddle Factor

FFT Radix-2 FFT Algorithm Basic DFT is of size 2 The N point DFT is decimated into 2 point DFT Decimation in Time (DIT) Algorithm Decimation in Frequency (DIF) Algorithm

Decimation in Time (DIT-FFT) Breaking x(n) in to its even and odd numbered values, Substitute n=2r for n even and n=2r+1 for n odd, we have

Using Symmetry property

4 Point DFT

4 Point DFT Similarly,

Two point DFT

Flow Graph DIT-FFT N=8

Flow Graph DIT-FFT N=8

Basic Butterfly Structure

Given x(n)={0,1,2,3,4,5,6,7}, find X(k) using DIT FFT algorithm.

X(k) = { 28 , -4+j9.656, -4+j4, -4+j1.656, -4, -4-j1.656, -4-j4, -4-j9.656 }

Given x(n)={1,2,3,4,4,3,2,1}, find X(k) using DIT FFT algorithm.

Decimation in Frequency (DIF-FFT)

k=2r and 2r+1

Where

Flow Graph-First Stage DIF-FFT

Where

Flow Graph-First Stage DIT-FFT

Flow Graph-Second Stage DIT-FFT
Tags