Fiber optics ray theory

solohermelin 6,416 views 23 slides Jan 09, 2015
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

Describes Fiber Optics using Optical Ray Theory.
For comments please contact me at [email protected].
For more presentations visit my website at http://www.solohermelin.com.


Slide Content

1
Fiber Optics
Ray Theory
SOLO HERMELIN
Updated: 17.06.06
http://www.solohermelin.com

2
SOLO Optical Fibre – Ray Theory
http://www.datacottage.com/nch/fibre.htm

3
A step-index cylindrical fiber has a central core of index n
core
surrounded by
cladding of index n
cladding
where n
cladding
< n
core
.
SOLO Optical Fiber – Ray Theory
Cladding
Core
axis
q
0q
iq
Core axis
Cladding
Skew ray in core of fiber
Meridional ray in core
with two reflexions
When a ray of light enters such a
fiber at an angle θ
0
is refracted at an
angle θ, and then reflected back at the
boundary between core and cladding,
if the angle of incidence θ
i is greater
than the critical angle θ
c
.
Two distinct rays can travel inside
the fiber in this way:
• meridional rays remain in a plan that contains fiber axis
• skew rays travel in a non-planar zig-zag path and never cross the fiber axis

4
For the meridional ray
SOLO Optical Fiber – Ray Theory
Cladding
Core
axis
q
0q
iq
Meridional ray in core
with two reflexions
Snell’s Law at the fiber enter
If the ray is refracted from the core
to the cladding than according to
Snell’s Law:
222
0 sin1cossinsin
claddingcoreicoreicorecore nnnnn -<-=== qqqq
r
core
cladding
i
n
n
qq sinsin=
If there is no tunneling from core to cladding. 1sin:sin £=>
c
core
cladding
i
n
n
qq
Since we have

90=+
iqq

qq sinsin
0
1
coreair nn =
Therefore total internal reflection will occur if:
2
22
0
1sin
÷
÷
ø
ö
ç
ç
è
æ
-=-<
core
cladding
corecladdingcore
n
n
nnnq

5
We consider only two
types of optical fibers:
SOLO Optical Fiber – Ray Theory
Skew ray in step-index
core fiber
Meridional ray in step-index
core fiber
Core axis
Cladding
Coreaxis
Cladding
z
q
fq
f1
r1
z1
.constnn
corecladding =<
Meridional ray in a grated-index core
Core
axis
Cladding
Skew ray in a grated-index core of fiber
()rnn
core
=
Core axis
Cladding
zq
fq
r
r1
f1
• step-index core fiber
where the index of
refraction in core is
constant and changes
by a step in the cladding
such that
corecladdingnn <
• graded-index core fiber
where the index of
refraction in core changes
as function of radius r
such that ()rnn
core=

6
For a graded-index core fiber n
core
= n ( r ) let develop the ray equation:
SOLO Optical Fiber – Ray Theory
() () ()rrn
rd
d
rn
sd
rd
rn
sd
d
1
ray
=Ñ=
÷
÷
ø
ö
ç
ç
è
æ

zzrrr 11
ray
+=

where:
rayr

- ray vector
ray
rdsd

=
Assuming a cylindrical core fiber we will use cylindrical coordinates
zzddrrrdrd 111
ray
++= ff

Graded-index Fiber
sz
sd
zd
sd
d
rr
sd
rd
sd
rd
1:111
ray
=++= f
f

ï
ï
î
ï
ï
í
ì
=
-=
=
01
11
11

zd
rdd
drd
ff
ff
011111 =-== z
sd
d
r
sd
d
sd
d
sd
d
r
sd
d f
ff
f
ï
ï
î
ï
ï
í
ì
=
+-=
+=
zz
yx
yxr
11
1cos1sin1
1sin1cos1
fff
ff
to describe the ray vector:
( ) ( ) ( ) ( )
2222
2/1
zddrrdrdrdsd
rayray
++=×= f
ray propagation direction
See S. Hermelin, “Foundation of Geometrical Optics”

7
SOLO Optical Fiber – Ray Theory
Skew ray in core of fiber
z
q
f
q
f1
r1
z1
r
Q
P
zrrr
zzz
1cos1cossin1sinsin1
ray
qqqqq
ff
++=
r
f
q
Core
Q'axis
Core
axis
Cladding
z
q
fq
r
r1
f1
ray1r
()rnn
core=
() () ()rrn
rd
d
rn
sd
rd
rn
sd
d
1
ray
=Ñ=
ú
û
ù
ê
ë
é

Graded-index Fiber (continue – 1(
z
sd
zd
sd
d
rr
sd
rd
sd
rd
111
ray
++= f
f

()
() ()
() ()
() ()

0
ray
1
1
1
1
1
1
sd
zd
sd
zd
rnz
sd
zd
rn
sd
d
sd
d
sd
d
rrn
sd
d
rrn
sd
d
sd
rd
sd
rd
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
+
ú
û
ù
ê
ë
é
+
+
ú
û
ù
ê
ë
é
+
+
ú
û
ù
ê
ë
é
=
ú
û
ù
ê
ë
é
ff
f
f

() () () () () z
sd
zd
rn
sd
d
r
sd
d
rnr
sd
d
rnr
sd
d
sd
d
sd
rd
rnr
sd
rd
rn
sd
d
11111
2
ú
û
ù
ê
ë
é
+
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
++
ú
û
ù
ê
ë
é
=
f
f
f
f
f
() () () () () ()
()
r
rd
rnd
z
sd
zd
rn
sd
d
sd
d
sd
rd
rn
sd
d
rn
sd
d
r
sd
d
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
11121
2
ray
=
ú
û
ù
ê
ë
é
+
þ
ý
ü
î
í
ì
+
ú
û
ù
ê
ë
é
+
ï
þ
ï
ý
ü
ï
î
ï
í
ì
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
=
ú
û
ù
ê
ë
é
f
fff

011111 =-== z
sd
d
r
sd
d
sd
d
sd
d
r
sd
d f
ff
f

8
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 2(
() () () () () ()
()
r
rd
rnd
z
sd
zd
rn
sd
d
sd
d
sd
rd
rn
sd
d
rn
sd
d
r
sd
d
rnr
sd
rd
rn
sd
d
sd
rd
rn
sd
d
11121
2
ray
=
ú
û
ù
ê
ë
é
+
þ
ý
ü
î
í
ì
+
ú
û
ù
ê
ë
é
+
ï
þ
ï
ý
ü
ï
î
ï
í
ì
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
=
ú
û
ù
ê
ë
é
f
fff

From this equation we obtain the following three
equations:
() ()
()
rd
rnd
sd
d
rnr
sd
rd
rn
sd
d
=
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
2
f
()
()
02 =+
ú
û
ù
ê
ë
é
sd
d
sd
rd
r
rn
sd
d
rn
sd
d ff
() 0=
ú
û
ù
ê
ë
é
sd
zd
rn
sd
d
() () 02
2
=+
ú
û
ù
ê
ë
é
sd
d
sd
rd
rrn
sd
d
rn
sd
d
r
ff
2

() 0
2
=
ú
û
ù
ê
ë
é
sd
d
rnr
sd
d f
() const
sd
zd
rn ==b () .
2
constl
sd
d
rnr ==r
f
Integration
Integration
where:
l,b - dimensionless constants (ray invariants( to be defined
r - radius of the boundary between core and cladding
By integrating the last two equation we obtain:
(1)
(2)
(3)
(3’) (2’)

9
() ()
zrn
sd
zd
rn qb cos==
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 3(
We found that the ray
propagation vector is
Skew ray in core of fiber
f
f1
r1 z1
Q
P
zrs
zzz 1cos1cossin1sinsin1 qfqqqq
ff ++=
Core
Q'
axis
Core
axis
Cladding
zq
s
sd
rd
1:
ray
=
f
f1
f
q
r
r1
f1inner
caustic
outer
caustic
s1
z1
z
q
()rnn
core
=
sz
sd
zd
sd
d
rr
sd
rd
sd
rd
1111
ray
=++= f
f

()rnsd
zdb
=
()rnr
l
sd
d
2
rf
=
() () sd
rd
z
rnrnr
l
r
sd
rd
s
ray
1111

=++=
b
f
r
( )
sd
rd
zrs
zz
ray
1cos1cos1sinsin1

=++= qfqqq
ff
Let write also as a function of two geometric parameterss1 f
qq,
z
f
q - skew angle
z
q - angle between and
s1 z1
()rnr
l
z
r
qq
f
=cossin ()
f
qq
r
cossin
z
rn
r
l=
(3’) (2’)

10
() ()
zrn
sd
zd
rn qb cos==
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 4(
We found
f
q
r
r1
f1
inner
caustic
intesects
ray path
outer
caustic
intersects
ray path
0=
f
q
0=
f
q
The skew rays take a helical path, as seen from the cross-section figure.
()
f
qq
r
cossin
z
rn
r
l=
() () () ()
22222
cos
sin
cos
b
r
q
r
q
r
q
f
-
=
-
==
rn
l
r
rnrn
l
rrn
l
r
z
z
() ()0==
ocic
rr
ff
qq
A particular family of skew ray will not come closer to the fiber axis than the
inner caustic cylindrical surface of radius r
ic
and further from the axis than the
outer caustic cylindrical surface of radius r
oc
. From the figure we can see that
at the intersection of ray path with the caustic surface
Therefore the caustic radiuses can be found by solving:
()
( )10cos
22
===
-
f
q
b
r
rn
l
r
or () () 0:
2
2
222
=--=
r
lrnrg
r
b () ()0==
ocic rgrg

11
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 5(
We obtained:
()rnsd
zdb
=
()rnr
l
sd
d
2
rf
=
()zd
d
rnzd
d
sd
zd
sd
d b
==
()
()
()
()
()
()
()rn
rd
rnd
rnr
l
rnr
zd
rd
rn
rn
zd
d
rn
´=
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
2
2
rbb
()
2
2
3
2
2
2
2
2
2
1
rd
rnd
r
l
zd
rd
=-
r
b
Define:
zd
rd
r=:'
rd
rd
r
zd
rd
rd
d
zd
rd
zd
rd
zd
d
zd
rd '
'
2
2
=
÷
÷
ø
ö
ç
ç
è
æ
=
÷
÷
ø
ö
ç
ç
è
æ
=
()
2
2
3
2
22
2
1
'
rd
rnd
r
l
rd
dr
r =-
r
b
Integration
()constrn
r
l
zd
rd
+=+
÷
÷
ø
ö
ç
ç
è
æ
2
2
2
2
2
2
2
1
2
1
2
1 r
b
() const
sd
zd
rn ==b(3’) () .
2
constl
sd
d
rnr ==r
f
(2’)
() ()
()
rd
rnd
sd
d
rnr
sd
rd
rn
sd
d
=
÷
÷
ø
ö
ç
ç
è
æ
-
ú
û
ù
ê
ë
é
2
f
(1)
()
()
2
2
2
222
2
2
2 b
r
bb +×+--=
÷
÷
ø
ö
ç
ç
è
æ
const
r
lrn
zd
rd
rg


12
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 6(
We obtained:
()
()
2
2
2
222
2
2
2 b
r
bb +×+--=
÷
÷
ø
ö
ç
ç
è
æ
const
r
lrn
zd
rd
rg

f
q
r
r1
f1
inner
caustic
intesects
ray path
outer
caustic
intersects
ray path
0=
f
q
0=
f
q
To determine the constant we use the fact that at
the caustic we have
therefore
() () 0&0
2
2
222
=--==
r
lrnrg
zd
rd r
b
02
2
=+× bconst
Finally we obtain the ray path equation:
() ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
Since a ray path exists only in the regions where0
2
2
³
÷
÷
ø
ö
ç
ç
è
æ
zd
rd
b ()0>rg

13
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 7(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
1. Bounded rays
The rays are bounded in the core region iff:
g (r)>0 for r
ic
<r < r
oc
and g (r)<0 for r ≥ ρ
r
r
ocr
icr
2
2
2
r
l
r
cladding
core
0¹l
()rg
skew ray
b<
cladding
n()
ociccore rrrrn ££>b
()
ociccorecladding rrrrnn ££<<b
r
r
oc
r
0=l
cladding
core
()rg
meridional ray

14
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 8(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
2. Refracted rays
The rays are refracted from the core in the
cladding region iff:
g (r)>0 for r ≥ ρ
rr
icr
2
2
2
r
l
r
cladding
core
0¹l
()rg
skew ray
222
ln
cladding
+>b

15
SOLO Optical Fiber – Ray Theory
Graded-index Fiber (continue – 9(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
3. Tunneling rays
The rays escape in the cladding region iff:
g (r)<0 for ρ <r<r
rad
and g (r)>0 for r ≥ r
rad
222
ln
cladding
+<b
rr
ocr
icr
2
2
2
r
l
r
cladding
core
0¹l
()rg
skew ray
radr
b>
cladding
n
22
ln
cladding
+<< bb
( ) 0
2
2
222
=--=
rad
claddingrade
r
lnrg
r
b
22
b
r
-
=
cladding
rad
n
l
r
The energy leaks from the core to
the cladding region.

16
For a step-index core
fiber n
core
= constant.
SOLO Optical Fiber – Ray Theory
Core axis
Cladding
Skew ray in core of fiber
z
q
f
q
s1
f1
r1
z1
r
Q
P
zrrs
zzz 1cos1cossin1sinsin1 qqqqq
ff ++=
r
f
q
Core
P
Q
Q'axis
P
Q'
r
f
qrsin2'=PQ
fq
fq
icr
f
qrcos=
ic
r
fq
inner
caustic
.constnn
corecladding
=<
Step-index Fiber
() ()
zrn
sd
zd
rn qb cos==
()
f
qq
r
cossin
z
rn
r
l=
() ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
()
î
í
ì
³=
<=
=
r
r
rconstn
rconstn
rn
cladding
core
2
1

17
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 7(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
1. Bounded rays
The rays are bounded in the core region iff:
g (r)>0 for r = ρ- ε and g (r)<0 for r = ρ+ε
b<
cladding
nb>
core
n
corecladding nn <<b
rr
22
b
r
-
=
core
ic
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
core
n
22
b-
cladding
n
corenn= claddingnn=
0
222
>--= lng
core
b
0
222
<--= lng
clad dingb
r
r
0=l
claddingcore
()rg
meridional ray
0
22
<-= b
clad din gng
0
22
>-= b
core
ng
co re
nn=
cla dd in g
nn=
()
î
í
ì
³=
<=
=
r
r
rconstn
rconstn
rn
cladding
core
2
1
()0=
ic
rg f
qqr
qb
qr
b
r
f
cos
cossin
cos22
zcore
zcore
nl
n
core
ic
n
l
r
=
=
=
-
=
P Q'
r
f
qrsin2'=PQ
f
q
fq
i c
r
f
qrcos=
i c
r
fq
inner
caustic

18
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 8(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
2. Refracted rays
The rays are refracted from the core in the
cladding region iff:
g (r)>0 for r ≥ ρ
22
ln
cladding
+>b
()
î
í
ì
³=
<=
=
r
r
rconstn
rconstn
rn
cladding
core
2
1
rr
22
b
r
-
=
core
ic
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
coren
22
b-
cladding
n
corenn= clad dingnn=
0
222
>--= lng
coreb
0
222
>--= lng
cla d din gb

19
SOLO Optical Fiber – Ray Theory
Step-index Fiber (continue – 9(
Analysis of: () ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
A ray path exists only in the regions where()0>rg
3. Tunneling rays
The rays escape in the cladding region iff:
g (r)<0 for ρ <r<r
rad
and g (r)>0 for r ≥ r
rad
222
ln
cladding
+<b b>
cladding
n
22
ln
cladding
+<< bb
( ) 0
2
2
222
=--=
rad
claddingrade
r
lnrg
r
b
22
b
r
-
=
cladding
rad
n
l
r
The energy leaks from the core to
the cladding region.
()
î
í
ì
³=
<=
=
r
r
rconstn
rconstn
rn
cladding
core
2
1
rr
22
b
r
-
=
core
ic
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
coren
22
b-
cladding
n
core
nn= cladding
nn=
22
b
r
-
=
cladding
rad
n
l
r
0
222
>-- ln
coreb
0
222
<-- ln
claddingb

20
For a step-index core
fiber n
core
= constant.
SOLO Optical Fiber – Ray Theory
P Q'
r
fqrsin2'=PQ
f
q
f
q
ic
r
f
qrcos=
i c
r
fq
inner
caustic
Step-index Fiber
() ()
2
2
222
2
2
:
r
lrnrg
zd
rd r
bb --==
÷
÷
ø
ö
ç
ç
è
æ
()
î
í
ì
³=
<=
=
r
r
rconstn
rconstn
rn
cladding
core
2
1
rr
22
b
r
-
=
co re
ic
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
core
n
22
b-
cl ad d ing
n
co renn= cla d di ng
nn=
0
222
>--= lng
c oreb
0
222
<--= lng
cla d di ng
b
r
r
0=l
claddingcore
()rg
meridional ray
0
22
<-= b
c l add i n gng
0
22
>-= b
coreng
co renn=
cl a ddi n gnn=
corecladding nn <<b
rr
22
b
r
-
=
co re
i c
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
co re
n
22
b-
cl a dd ingn
co renn= cl ad di ngnn=
0
222
>--= lng
co reb
0
222
>--= lng
c la dd i ngb
rr
22
b
r
-
=
co re
i c
n
l
r
2
2
2
r
l
r
claddingcore
0¹l
()rg
skew ray
22
b-
co ren
22
b-
cl a dd ingn
co renn= cl ad di ngnn=
22
b
r
-
=
cl a ddi n g
rad
n
l
r
0
222
>-- ln
coreb
0
222
<-- ln
cla dd i ngb
1. Bounded rays
2. Refracted rays
222
ln
cladding
+>b
3. Tunneling rays
22
ln
cladding
+<< bb

21

22
SOLO
References

C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996,

OPTICS
S. Hermelin, “Foundation of Geometrical Optics”

January 9, 2015 23
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA