Final report

15,856 views 177 slides Mar 08, 2017
Slide 1
Slide 1 of 177
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177

About This Presentation

DESIGN OF BOX CULVERT AS PER IRC-112: 2011, INTERNSHIP PROJECT REPORT.
INCLUDES:
1) BASIC DETAILS
2) DESIGN OF 2 CELL BOX CULVERT
3) DESIGN OF WING WALLS (RETAINING WALLS) AS PER IRC


Slide Content

An Internship Report on
DESIGN AND DETAILING OF BOX CULVERT
Submitted in partial fulfillment for the award of the degree of
Master of Technology
In
Structural Engineering

Submitted
By:
SUMEET DILIP DIVATAGI
USN: 1BI15CSE15
Internship Carried Out
at
STUP CONSULTANTS PVT. LTD
5
th
& 6
th
floor, Golden Enclave, Old Airport Road, Bengaluru-560017









Department of Civil Engineering
Bangalore Institute of Technology
K.R. Road, V.V. Puram Bengaluru- 560004
2016-17
INTERNAL GUIDES:
Mr. Madhan. S
Dr. P. M. Ravindra
Bangalore Institute of
Technology
EXTERNAL GUIDES:
Mr. Prabhanandan K
(Associate Principal Manager-Design)
Mr. Ashok Kumar G
(Senior Design Engineer)
STUP CONSULTANTS PVT. LTD.

BANGALORE INSTITUTE OF TECHNOLOGY
K. R. ROAD, V.V. PURAM, BENGALURU-560004

DEPARTMENT OF CIVIL ENGINEERING
(Post Graduate Studies)

Certificate
This is to certify that this internship report has been successfully carried out by SUMEET
DILIP DIVATAGI bearing USN: 1BI15CSE15 in partial fulfillment of the requirements for the
award of Master of Technology in Structural Engineering from Visvesvaraya Technological
University, Belagavi during the year 2016-2017. The internship report has been approved as it
satisfies the academic requirements in respect of internship work prescribed for the Masters of
Technology.
















Examiners:

Name Signature
1.

2.

Mr. Madhan. S
(Asst. professor, Guide)

Dr. A. G. Nataraj
Principal, BIT

Dr. Aswath. M. U.
H.O.D
Department of Civil Engineering,
BIT

Dr. P. M. Ravindra
Co-ordinator, P.G. Studies

BANGALORE INSTITUTE OF TECHNOLOGY
K. R. ROAD, V.V. PURAM, BENGALURU-560004


DEPARTMENT OF CIVIL ENGINEERING
(Post Graduate Studies)

DECLARATION

I, the undersigned declare that this internship report is bonafide work carried out by me
during 2016-17 in partial fulfillment of the requirements for the award of Post-Graduation Degree of
Master of Technology in Structural Engineering of Visvesvaraya Technological University, Belagavi
and is based on the internship carried out in STUP CONSULTANTS PVT. LTD. Bengaluru under
the guidance of Mr. Madhan S, Asst. Professor and Dr. P.M. Ravindra, Professor, Department of
Civil Engineering, Bangalore Institute of Technology, Bengaluru and Mr. Prabhanandan K,
Associate Principal Manager, and Mr. Ashok Kumar G, Sr. Design Engineer, STUP consultants
Pvt. Ltd, Bengaluru.

I also declare that this internship report has not been submitted to any other University or Institute
for the award of any degree.





SUMEET DILIP DIVATAGI
USN: 1BI15CSE15
M. Tech (Structural Engineering)
Bangalore Institute of Technology
Bengaluru

ACKNOWLEDGEMENT

I express my gratitude to the Director of STUP CONSULTANTS PVT. LTD, Mr. A.
T. Samuel and the Management Team of STUP CONSULTANTS PVT. LTD. for providing an
opportunity to work as an intern in this deemed organization and their guidance throughout the
period of internship.

I express my sincere thanks to our internship guides, Mr. Prabhanandan K, Associate
Principal Manager-Design, and Mr. Ashok Kumar G, Senior Design Engineer for giving us an
insight about the Structural and Water Resource and Irrigation Design Industry and sharing their
knowledge and experiences in carrying out our design project in their busy schedule, without their
guidance and support my internship would not have been completed successfully.

I am also thankful to all the technical and non-technical staff of STUP CONSULTANTS
PVT. LTD, who have directly or indirectly helped me and supported me during my internship
program,

I’m grateful to Dr. A. G. Nataraj, Principal, Bangalore Institute of Technology, Prof. Dr.
P.M Ravindra, Professor & Coordinator- PG Studies, Department of Civil Engineering,
Bangalore Institute of Technology, and all the other faculties of Civil Engineering Department of
Bangalore Institute of Technology, Bengaluru, for their generous guidance, help and useful
suggestions.

I would like to place on record my deep sense of gratitude to Prof. Dr. Aswath M.U.,
Head of the Department, Department of Civil Engineering, Bangalore Institute of Technology,
Bengaluru for his extended support, generous guidance and encouragement for all our endeavors.

I would like to place on record my deep sense of gratitude to my internal guide Mr.
Madhan S, Asst. Professor Department of Civil Engineering, Bangalore Institute of Technology,
Bengaluru for his extended support, generous guidance and encouragement for all our endeavors.

TABLE OF CONTENTS
Certificate………………………………………………………………………………………i
Completion Certificate……………………………………………………………………….ii
Declaration……………………………………………………………………………………iii
Acknowledgement…………………………………………………………………………….iv
Table of Contents…………….………………………………………………………………v
List of Tables…………………………………………………………………………………viii
List of Figures………………………………………………………………………………..ix
Notations……………………………………………………………………………………...xi
Objectives of Internship……………………………………………………………………xiii
About the company…………………………………………………………………………
.xiv
CHAPTER 01: INTRODUCTION 01-02
1.0.Design and Detailing of Box Culvert 02
CHAPTER 02: HYDROLOGY 03-12
2.1. Hydraulic Particulars of the canal 04
2.2. Nalla Particulars 04
2.3. Calculation of Catchment Area 05
2.3.1. Grid Method 05
2.3.2. Planimeter 05
2.3.3. AutoCAD 06
2.4. Design Discharge Calculations 06
2.4.1. Empirical Formula Methods 06
2.4.1.1. Dicken's Formula 06
2.4.1.2. Ryve's Formula 06
2.4.1.3. Ingli’s Formula 07
2.4.2. Rational Formula 07
2.4.3. Modified Rational Formula 08
2.4.4. Area-Velocity Method 09
2.4.5. Conclusions 11
CHAPTER 03: HYDRAULICS 13-15
3.1. Vent Way Requirements 14
3.2. Scour Depth Calculations 15
3.3. Calculation of Afflux 16

CHAPTER 04: LOAD CALCULATIONS 16-33
4.1. Design Data 17
4.2. Load Calculations 19
4.2.1. Dead Load 19
4.2.2. Super Imposed Dead Load 19
4.2.3. Earth Pressure 20
4.2.4. Live Load Surcharge 20
4.2.5. Live Load 21
4.2.5.1. Class 70R Wheeled 21
4.2.5.2. Class 70R Maximum Bogie Load 25
4.2.5.3. Class 70R Tracked 27
4.2.5.4. Class A Single Lane 28
4.2.5.5. Class A Double Lane 31
CHAPTER 05: STRUCTURAL ANALYSIS OF BOX CULVERT 34-41
5.1. Design Section Forces 35
5.2. Combination of Loads for Limit State Design 39
CHAPTER 06: STRESS-BLOCK PARAMETERS 42-46
6.1. Calculation of Stress Block Parameters 43
CHAPTER 07: STRUCTURAL DESIGN OF BOX CULVERT 47-67
7.1. Center Wall Design 49
7.2. Typical long hand calculation for Top Slab Section 3 54
7.2.1. Ultimate Limit State 54
7.2.1.1. Flexural Design 54
7.2.1.2. Check for Shear 55
7.2.2. Serviceability Limit State 59
7.2.2.1. Permissible Stress Check 59
7.2.2.2. Check for Crack Width 60
7.3. Check for Bearing Pressure 64
7.3.1. Permanent Loads 65
7.3.2. Live Load 66
7.3.3. Pressure Calculations 67
CHAPTER 08: DESIGN OF WING WALL 68-122
8.0. Design of wing wall- data 69

8.1. Section 1-1 71
8.1.1. Dimensions of Section 1-1 71
8.1.2. Ultimate Limit State of Strength- Basic Combination 74
8.1.3. Limit State of Serviceability- Rare combination 82
8.1.4. Limit State of Serviceability- Quasi Permanent Combination 87
8.2. Section 2-2 92
8.2.1. Dimensions of Section 2-2 92
8.2.2. Ultimate Limit State of Strength- Basic Combination 95
8.2.3. Limit State of Serviceability- Rare combination 99
8.2.4. Limit State of Serviceability- Quasi Permanent Combination 104
8.3. Section 3-3 108
8.3.1. Dimensions of Section 3-3 108
8.3.2. Ultimate Limit State of Strength- Basic Combination 111
8.3.3. Limit State of Serviceability- Rare combination 115
8.3.4. Limit State of Serviceability- Quasi Permanent Combination 119
CHAPTER 09: CONCLUSIONS 123-124
ANNEXURE-I 125
ANNEXURE-II 149
REFERENCES 153

LIST OF TABLES
Table 2.1: Computation by Equivalent Slope Method 09
Table 2.2: Cross section at Box culvert site 10
Table 2.3: Design Discharge 11
Table 5.1: Load combination for Ultimate Limit State of Strength 39
Table 5.2: load Combination for Limit State of Serviceability 40
Table 5.3: Design forces from STAAD Pro. 41
Table 7.1: Design of sections for flexure- U.L.S 48
Table 7.2: Design of sections for Shear- U.L.S 50
Table 7.3: Check for maximum stress- S.L.S 51
Table 7.4: Check for crack width- S.L.S 52
Table 7.5: Check for Deflection- S.L.S 53

LIST OF FIGURES
Fig. 1.1: Location of Structure 02
Fig. 2.1: Trial Pit 04
Fig. 2.2: Catchment area 05
Fig. 2.3: Longitudinal section of Nalla 10
Fig. 2.4: Cross section at box culvert site 11
Fig. 3.1: Length of Barrel 15
Fig. 4.1: Dimensions of Box Culvert 17
Fig. 4.2: Earth Pressure 20
Fig. 4.3: Class 70R Wheeled 21
Fig. 4.4: Wheel arrangement- 70R Wheeled 22
Fig. 4.5: Dispersion of 70R Wheeled 22
Fig. 4.6: Class 70R Wheeled- Case 01 Dispersion 23
Fig. 4.7: Class 70R Wheeled- Case 02 Dispersion 23
Fig. 4.8: Class 70R Wheeled- Case 03 Dispersion 24
Fig. 4.9: Class 70R max bogie load 25
Fig. 4.10: Class 70R max bogie load- Case 01 Dispersion 25
Fig. 4.11: Class 70R max bogie load- Case 02 Dispersion 26
Fig. 4.12: Class 70R max bogie load- Case 03 Dispersion 26
Fig. 4.13: Class 70R Tracked- Wheel Configuration 27
Fig. 4.14: Class A Single lane- Wheel Configuration 28
Fig. 4.15: Class A Single lane- Case 01 Dispersion 29
Fig. 4.16: Class A Single lane- Case 02 Dispersion 30
Fig. 4.17: Class A Single lane- Case 03 Dispersion 30
Fig. 4.18: Class A Double lane- Case 01 Dispersion 31
Fig. 4.19: Class A Double lane- Case 02 Dispersion 32
Fig. 4.20: Class A Double lane- Case 03 Dispersion 32
Fig. 5.1: Box Culvert sections 35
Fig. 5.2: STAAD Model dimensions 35
Fig. 5.3: Node Numbers 36
Fig. 5.4: Beam Numbers 36
Fig. 5.5: Bending Moment Diagram due to Dead load 37
Fig. 5.6: Bending Moment Diagram due to SIDL 37

Fig. 5.7: Bending Moment Diagram due to Earth Pressure 38
Fig. 5.8: Bending Moment Diagram due to Live Load Surcharge 38
Fig. 5.9: Bending Moment Diagram due to Live Load (Class A 2 Lane) 39
Fig. 6.1: Stress Block Parameters 43
Fig. 6.2: Stress Block Parameters- values 43
Fig. 6.3: Stress Block Parameters- Balanced section 44
Fig. 7.1: Effective tension area 62
Fig. 7.2: Plan of Culvert 64
Fig. 7.3: Longitudinal section of Box Culvert 64
Fig. 7.4: Cross section of Box Culvert 64
Fig. 7.5: Live Load eccentricity 66
Fig. 8.1: Dimension nomenclature of Retaining wall 70
Fig. 8.2: Section 1-1 Dimensions 72
Fig. 8.3: Section 1-1 –Forces acting on stem- Basic combination 76
Fig. 8.4: Section 1-1 –Upward bearing pressure for footing- Basic Combination 80
Fig. 8.5: Section 1-1 –Forces acting on stem- Rare combination 83
Fig. 8.6: Section 1-1 –Upward bearing pressure for footing- Rare Combination 85
Fig. 8.7: Section 1-1 –Forces acting on stem- Quasi Permanent 88
Fig. 8.8: Section 1-1 –Upward bearing pressure for footing- Quasi Permanent 90
Fig. 8.9: Section 2-2 Dimensions 93
Fig. 8.10: Section 2-2 –Forces acting on stem- Basic combination 96
Fig. 8.11: Section 2-2 –Upward bearing pressure for footing- Basic Combination 97
Fig. 8.12: Section 2-2 –Forces acting on stem- Rare combination 100
Fig. 8.13: Section 2-2 –Upward bearing pressure for footing- Rare Combination 101
Fig. 8.14: Section 2-2 –Forces acting on stem- Quasi Permanent 104
Fig. 8.15: Section 2-2 –Upward bearing pressure for footing- Quasi Permanent 105
Fig. 8.9: Section 3-3 Dimensions 109
Fig. 8.10: Section 3-3 –Forces acting on stem- Basic combination 112
Fig. 8.11: Section 3-3 –Upward bearing pressure for footing- Basic Combination 113
Fig. 8.12: Section 3-3 –Forces acting on stem- Rare combination 116
Fig. 8.13: Section 3-3 –Upward bearing pressure for footing- Rare Combination 117
Fig. 8.14: Section 3-3 –Forces acting on stem- Quasi Permanent 120
Fig. 8.15: Section 3-3 –Upward bearing pressure for footing- Quasi Permanent 121

NOTATIONS
LATIN UPPER CASE LETTERS
A = Cross sectional area
A
c = Cross sectional area of concrete
A
s = Cross sectional area of reinforcement
A
sw = Cross sectional area of shear reinforcement
A
s min = Minimum cross sectional area of reinforcement
A
s pro = Cross sectional area of reinforcement provided
D = Overall depth of cross section
E
c = Tangent modulus of elasticity of normal weight concrete at a stress
of σ
c=0
E
c eff = Effective modulus of elasticity of concrete
E
s = Effective modulus of elasticity of steel
FOS = Factor of safety
I
cr = Cracked moment of inertia of concrete section
M = Bending moment
M
R = Resisting moment
M
O = Overturning moment
N
Ed. = Design value of the applied axial force (tension or compression)
P
a = Active earth pressure
P
ah = Horizontal component of active earth pressure
P
av = Vertical component of active earth pressure
S = Spacing
S
r max = Maximum crack spacing
SLS = Serviceability limit state
ULS = Ultimate limit state
V = Shear force
V
Ed. = Design value of the applied shear force
V
Rd.c = Design shear resistance
W
k = Crack width
Z = Sectional modulus

LATIN LOWER CASE LETTERS
b
w = Width of the web
d = effective depth of the member
e = Eccentricity
f
cd = Design value of concrete compressive strength
f
ck = Characteristic compressive cube strength of concrete at 28 days
f
y = Yield strength of reinforcement
f
ctm = Mean value of axial tensile strength of concrete
h = Overall depth of cross section
k
t = factor dependent on the duration of load
l
o = Clear height of compression member between end restraints
x
u = Neutral axis depth
z = Lever arm of internal forces
GREEK LOWER CASE LETTERS
σ
sc = Tensile stress in steel
σ
c = Compressive stress in concrete
σ
cp = Compressive stress in concrete from axial load
α = Angle; Ratio
β = Angle; Ratio; Coefficient
θ = Angle

c = Compressive strain in concrete

cu = Ultimate compressive strain in concrete

s = Ultimate tensile strain in steel
μ = Coefficient of friction
ρ
1 = Reinforcement ratio for longitudinal reinforcement
ρ
w = Reinforcement ratio for shear reinforcement
ϕ = Diameter of reinforcing bar
δ = Increment/Redistribution ratio
γ
m = Partial factors for a material property, taking account only of
uncertainties in the material property
ν = Strength reduction factor for concrete cracked in shear

sm = Mean strain in the reinforcement

cm = Mean strain in the concrete between cracks

OBJECTIVES OF INTERNSHIP
 Bridge gap between academics and industry
 Applicability of academics in industry
 To know the work flow.
 To learn the designs thoroughly.

ABOUT THE COMPANY
INTRODUCTION
 STUP is a full service project delivery consultancy company offering integrated planning,
architectural, engineering and project management services for transportation, marine, water,
power, telecommunications, commercial, institutional, recreational and manufacturing
facility infrastructure, and is an international firm with over 1200 professionals in more than
20 offices and global project locations.
 STUP, a French acronym for “Societe Technique pour l’Utilisation de la Precontrainte”
meaning “technical corporation for the utilization of prestressed concrete”
 STUP has served over 10,000 clients in 37 countries on projects of tremendous diversity
 Established in Paris in 1944 to spread knowledge of prestressed concrete and other inventions
of Mr. Eugene Freyssinet
 First global office was established by Mr. Yves Guyon
 STUP Consultants Pvt. Ltd. ("STUP") was established in India in 1963 and had been inspired
& led by C R Alimchandani for five decades.
 It has offices/served clients in: Afghanistan, Algeria, Bahrain, Bangladesh, Bhutan, Brunei,
Cambodia, Cyprus, France, Ghana, India, Indonesia, Iran, Iraq, Jordan, Kuwait, Laos, Libya,
Malaysia, Maldives, Nepal, Oman, Papua New Guinea, Philippines, Qatar, Russia, Sri Lanka,
Tanzania, U.A.E., United States, Vietnam, and Yemen.
 In India: Mumbai, Navi Mumbai, Bangalore, Chennai, Hyderabad, Kolkata, Delhi, Pune,
Ahmedabad
FIELD OF EXPERTISE
 AIRPORTS & AVIATION
 Master planning
 Airside Infrastructure
 Landside Infrastructure
 Runway Infrastructure & Taxiway
 Terminal Buildings
 ATC Towers
 Aircraft Manufacturing & Maintenance Unit
 Hangers & Maintenance Factory
 Maintenance Block
 Catering & Cargo Buildings

 URBAN, RURAL AND INDUSTRIAL DEVELOPMENT
 Master Planning & Urban Design
 Airports
 Corporate Headquarters & Commercial Complex
 High-tech Parks (IT, Bio-tech, Pharmaceutical, Apparels)
 Hospitality : Hotels & Resorts
 Universities & Institutes
 Industrial
 Residential & Mixed Use
 Healthcare & Hospitals
 SEZ and Integrated Townships
 Leisure & Sports
 Entertainment, Convention Centers & Retail
 Signature Public Buildings
 Interiors
 ENERGY, TELECOMMUNICATION AND SPACE INFRASTRUCTURE
 Containment for Nuclear Reactor Buildings
 Thermal & Hydro-electric Power Projects
 Thermal & Structural Design of Natural Draught Cooling Towers
 Thermal & Structural Design of Induced Draught Cooling Towers
 Functional & Structural Design of Tall Chimneys
 Cryogenic Tanks for Storage of LNG
 Special structure like tall pylons for supporting boilers etc.
 Material Conveyance Structures
 Structural and Civil Engineering for Energy related projects
 Water Intake and Circulation System
 ENVIRONMENTAL AND PUBLIC HEALTH ENGINEERING
 Water resources studies including design of systems
 Process design of water treatment and desalinization
 Collection, treatment and disposal of sewage, industrial effluent and solid waste
 Drainage Network and Discharge
 Specialized techniques for reservoir construction
 Environmental Consultancy Services

 ROADS, HIGHWAYS, EXPRESSWAYS
 Socio-techno-economic Feasibility and
 Traffic Studies
 Prioritization and Master plans
 Road Design, Strengthening, Widening and Expansion
 Urban and Rural Roads
 Expressways and Elevated Roads
 Flyovers and Interchange Systems
 Road Bridges
 Underpass/ Box-Pushing/ Tunneling
 Road Maintenance and Bridge Rehabilitation
 BRIDGES & FLYOVERS
 Cable Stayed Bridges
 Extra-dosed Bridges
 Suspension Bridges
 Segmental - Precast (Box) / Insitu (Box)
 Cantilever Construction / Balanced Cantilever
 Steel Girder Bridges-Through Type / Composite Deck Type Bridge/ Under Slung
 Arch Bridges
 Rail Cum Road Bridges
 Interchanges / Flyovers /T-Beam - Insitu / Precast T-Beam
 Incremental Launching / Nose Launching
 METROS
 Elevated Viaduct
 Elevated Station
 Underground Station
 Tunnel
 Underground Crossovers
 RAILWAYS
 Trackwork
 Railway Crossing Structures, Railway Station Building, Railway Plants and other
Infrastructure
 Railway Bridges
 Dedicated Freight Corridor

 OFFSHORE, HARBOR AND COASTAL ENGINEERING
 Ports and Harbor’s
 Mooring and Berthing Structures
 Jetties and Break Waters
 Ship lifts, Slipways and Dry Docks
 Offshore Yards
 Intake and Outfall
 Cargo Handling
 LPG / LNG / POL / Dry Bulk / Crude Oil Terminals
 Navigation Aids
 Rehabilitation of Marine Structures
 WATER RESOURCES AND AGRICULTURAL DEVELOPMENT
 Major and Minor Irrigation Projects & Command Area Development
 Aqueducts, Syphons, Canals and Canal Regulatory Works
 Intake Structures, Tunnels, Surge Shafts, Penstocks and Power Houses
 Engineering of Barrages, Major Dams and Irrigation Tanks
 Lift Irrigation Schemes
 Water Distribution Systems
 Water Resources Consolidation
 Flood Control
 Evaluation of the Safety of Dams
 Modernization of Canals
 CONSTRUCTION ENGINEERING, PROJECT MANAGEMENT AND TECHNOLOGY
TRANSFER
 Airport Projects
 Urban Infrastructure
 Building Design & Integrated Engineering
 Energy, Telecommunication and Space Infrastructure Projects
 Environmental and Public Health Engineering Projects
 Major Structures (Bridges & Flyovers)
 Highways (Roads, Highways & Expressways) / IE Engineering
 Metros & Railways
 Marine Projects
 Rehabilitation Projects

 Water Resources Projects
 Lender’s Engineer
 REHABILITATION OF STRUCTURES AND HERITAGE BUILDINGS
 Inspection and Surveys
 Tests (Destructive and Non-destructive)
 Rehabilitation Studies
 Restoration Studies
 Rehabilitation Schemes
 Restoration Schemes
 Residual Life Estimation
CLIENTS
Funding Agencies
 Asian Development Bank (ADB)
 African Development Bank (AFDB)
 World Bank (WB)
 Japan Bank of International Cooperation (JBIC)
 International Bank of Reconstruction and Development (IBRD)
 United Nations Development Programme (UNDP)
 World Health Organization (WHO)
 Department for International Development, UK (DFID)
 Kuwait Fund for Arab Economic Development (KFAED)
Government Bodies
 Govt. of United States
 Govt. of Marshall Island
 Sultanate of Oman
 Govt. of Laos PDR
 Govt. of Vietnam
 Govt. of Brunei
 Govt. of Iraq
 Govt. of U. A. E.
 Govt. of India
 Govt. of Ghana
 Govt. of Qatar

 Govt. of Malaysia
 Govt. of Indonesia
 Govt. of Bhutan
 Govt. of Kuwait
 Govt. of Algeria
 Govt. of Bangladesh
Contractors & Developers
 Sadbhav Engineering Ltd.
 Simplex Infrastructures Ltd.
 Essel Infrastructures Group
 Afcons Infrastructure Limited
 Innovative Technical Solutions Inc. (ITSI)
 Bechtel
 Degremont
 Alsthom
 Dumez
 Galfar
 Ideal Road Builders
 Gammon India Limited
 Larsen & Toubro Limited
 Consolidated Contractors Company (CCC)
 Six Construct
 Emaar
 Hindustan Construction Company (HCC)
Corporations
 Aeroport de Paris Ingenieurs
 Cognizant Software
 Marriot Hotels
 Reliance
 Kuwait Airways Corporation
 Hyatt Hotels & Resorts
 Birla Brothers
 Indian Oil Corporation
 Sterlite

 Oil and Natural Gas Company Limited
 Nuclear Power Corporation of India
 Ministry of Roads Transport and Highways
 National Highways Authority of India
 Central Public Works Department
 Ghaziabad Development Authority GDA)
 Thane Municipal Corporation (TMC)
 Municipal Corporation of Greater Mumbai (MCGM)
 Mumbai Metropolitan Region Development Authority (MMRDA)
EXTERNAL GUIDES:
1. Mr. Prabhanandan K
M.E. (Structures)
Associate Principal Manager (Design)
Experience: 17 years
2. Mr. Ashok Kumar. G.
M. Tech (Water Resource a& Hydrology)
Senior Design Engineer
Experience: 14 years

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 1












CHAPTER 01
INTRODUCTION

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 2
1.0 DESIGN AND DETAILING OF BOX CULVERT
The Upper Krishna project constitutes of two dams:
 Almatti Dam
 Narayanpura Dam
Krishna Bhagya Jala Nigam Limited is implementing several lift irrigation scheme on the
Krishna basin to lift water and irrigate drought prone northern Karnataka districts.
Mulwad Lift Irrigation Scheme is taken on foreshore of Almatti reservoir:
 Scheme A consists of Stage I and Stage II required irrigating 30,850 hectares of lands up to
contour RL 560.00m and these works are already completed.
 Stage III required to irrigate 2,27,966 hectares of land up to contour RL 640.00m and the
work is in progress
Huvina Hipparagi Branch Canal
 The Stage III of MLIP is to lift water from RL 560m to RL 640m.
 It is the 3
rd
lift at RL 560m and is called the Bijapur Main Canal.
Huvinu Hipparagi Branch Canal takes off from the Bijapur Main Canal at chainage 11.070km
and runs for a length of 63.88kms to irrigate about 23,676 hectares with discharge of 13.152 cumecs
at chainage 0.00 km.
A natural stream (nalla) crosses the canal at chainage 55.680km for which box culvert is
proposed.
Location: Longitude 76˚8’19.33” Latitude 16˚22’49.615”

Fig. 1.1: Location of Structure

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 3












CHAPTER 02
HYDROLOGY

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 4
2.1. HYDRAULIC PARTICULARS OF THE CANAL
Ground level = 577.794 m
Canal bed level = 580.928 m
Height of bed filing = 3.134 m
Design discharge in canal = 2.790 m
3
/s
Bed width = 1.450 m
Full supply depth = 1.300 m
Free board = 0.450 m
Side slope = 1.5: 1
Bed fall = 1 in 5000
Velocity in trough = 0.631 m/s
Top width of canal at FSL = 5.350 m
Top width of canal at FBL = 6.700 m
Top width of canal at GL = 6.700 m
Lining thickness of canal = 0.080 m
Rear side slope = 1.5:1
Service road width = 5.500 m
Inspection path width = 3.000 m
2.2. NALLA PARTICULARS
Lowest nalla bed level = 577.794 m
Observed high flood level = 579.212 m
Width of nalla = 25.000 m
Trial Pit Details
All kinds of soil = 3.200 m
Soft Rock = 0.000 m
Hard Rock = 0.000 m

Fig. 2.1: Trial Pit

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 5
2.3. CALCULATION OF CATCHMENT AREA
2.3.1. Grid Method


Fig. 2.2: Catchment Area
No. of full squares = 85
No. of three quarter squares = 15
No. of half squares = 10
No. of quarter squares = 7
Total no. of squares = (85 × 1) + (15 ×
3
4
H
) + (10 ×
1
2
H ) + (7 ×
1
4
H )
= 103
Scale 1 cm = 15000 cm
1 cm = 0.150 cm
1 cm
2
= 0.023 km
2

Area = 103 x 0.023
= 2.318 km
2

2.3.2. Planimeter
Least count of drum = 100 cm
2

Least count of 1 division = 1 cm
2

Least count of 1 vernier division = 0.1 cm
2

Scale 1:15000
Box Culvert at
Chainage 55.680 km

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 6
No. of times the zero mark passes
the fixes dial (N) = 1
Initial reading (I R) = 0
Final reading (F R) = 4
Coinciding vernier division = 5
Area = (N ×LC Drum + (FR - IP) ×LC Div +Vernier ×LCVD)
= 104.500 cm
2

Area to scale = Planimeter area × scale
= 2.351 km
2

2.3.3. AutoCAD
The area calculated in AutoCAD= 2.338 km
2

CONCLUSION
The area of catchment for further calculations = 2.351 km
2
2.4. DESIGN DISCHARGE CALCULATIONS
2.4.1 EMPIRICAL FORMULA METHOD

2.4.1.1. Dicken's Formula
Q = C × M
3/4
(Cl. 4.2, IRC SP: 13-2004)
Q = Discharge in m
3
/s
C = Dicken's Constant
= 11 - 14 where the annual rainfall is 60 - 120 cm
= 14 - 19 where the annual rainfall more than 120 cm
= 22 in Western Ghats
M = Catchment area km
2

Q = 11 × 2.351
3/4
= 20.887 m
3
/s
2.4.1.2. Ryve's Formula
Q = C × M
2/3
(Cl. 4.3, IRC SP: 13-2004)
Q = Discharge in m
3
/s
C = Ryve's Constant
= 6.8 for areas within 25 km of the coast
= 8.5 for areas between 25 km and 160 km of the coast
= 15 for this case (Krishna River Basin) CWC Manual
= 10 for limited areas near the hills
M = Catchment area km
2

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 7
Q = 15 × 2.351
2/3
= 26.523 m
3
/s
2.4.1.3. Ingli's Formula
Q =
TER0×0I
√IOTD
(Cl. 4.4, IRC SP: 13-2004)
Q = Discharge in m
3
/s
M = Catchment area km
2

Q =
TER0×0EU.RT
√EU.RTOTD
= 83.628 m
3
/s
2.4.2. RATIONAL FORMULA
Q = λ × I
0 × A (Cl. 4.7.9, Eq. 4.14, IRC SP: 13-2004)
λ =
DUDRS0×0G0×0L
FB0O0T
(Cl. 4.7.9, Eq. 4.14a, IRC SP: 13-2004)
t
c = X
DUVM0×0u
l
w
a
DU.VR
(Cl. 4.7.5.2, Eq. 4.9, IRC:SP:13-2004)
Q = Discharge in m
3
/s
λ = coefficient of runoff
f = fraction of rainfall
P = coefficient of runoff for catchment area
t
c = time of concentration
L = distance from critical point to the structure (km)
H = the fall in level from critical point to the structure (m)
A = area in hectares
L = 1.680 km (Contour Map)
H = (601.000 - 577.794)
= 23.206 m (Contour Map)
A = 235.125 ha
F = 0.990 (fig 4.2, IRC-SP 13)
P = 0.600 (black cotton soil, Table 4.1 IRC-SP 13)
t
c = 0.514 hrs
λ = 0.022
As per figure 6.2, page 44 of Flood Estimation Methods for Catchment Less than 25 km
2
,
Bridge and Flood Wings Report No. RBF – 16, Ministry of Railway, Government of India,
Ratio =
RD0dift0r0gont0tfchGfee
RD0dift0Em0gont0tfchGfee

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 8
As per Plate 17, Atlas of State wise Genralised Isopluvial Maps of Southern India,
Indian Meteorological Department September 2007
50 year 24 hour rainfall = 200 mm
0.245 =
s
EDD

I
0 = 4.9 cm/hr
Q = 0.022 × 4.9 × 235.125 = 25.308 m
3
/s
2.4.3. MODIFIED RATIONAL FORMULA
This method is as per Flood Estimation Methods for Catchment Less than 25 km
2
, Bridge and
Flood Wings Report No. RBF – 16, Ministry of Railway, Government of India.
Q
50 = 0.278 × C × I50 × A
Q
50 = 50 year return flood peak m
3
/s
C = Runoff coefficient
I
50 = 50 year rainfall intensity (mm/hr) lasting for t c hour duration, where t c is the
time of concentration.
A = Catchment area in km
2
= 2.351 km
2

Runoff Coefficient [C]
From table 6.1,
C = 0.415 × (R ×F)
0.2
(Silt)
R = 50 year 24 hour point rainfall in cm
F = Areal reduction factor depending upon area and duration of rainfall
From table 6.2, for t
c = 30.86 minutes and for catchment area less than 2.5 km
2

F = 0.81
R = 20 cm from 50 years 24 hours Isopluvial map
C = 0.415 × (20 ×0.81)
0.2
= 0.7244
Rainfall Intensity (I
50)
Ratio =
RD0dift0r0gont0tfchGfee
RD0dift0Em0gont0tfchGfee
(Figure 6.2)
As per Plate 17, Atlas of State wise Genralised Isopluvial Maps of Southern India,
Indian Meteorological Department September 2007
50 year 24 hour rainfall = 200
0.245 =
s
EDD

I = 49 mm/hr

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 9
Q = 0.278 × 0.7244 × 49 × 2.35125
Q = 23.20 m
3
/s
2.4.4. AREA-VELOCITY METHOD
Calculation of Bed Slope
Table 2.1: Computation by Equivalent Slope Method

Chainage
Distance Length
Lowest
NBL
Triangular
Area
Rectangular
Area
∑ of Area
m m m m m
2
m
2
m
2

Up
stream of
Canal
100 0 0 580.792 - - -
80 20 20 580.454 3.380 29.080 32.460
60 20 40 580.280 1.740 25.600 27.340
40 20 60 580.034 2.460 20.680 23.140
30 10 70 580.634 -3.000 16.340 13.340
25 5 75 580.388 0.615 6.940 7.555
20 5 80 579.066 3.305 0.330 3.635
15 5 85 578.099 2.417 -4.505 -2.087
10 5 90 578.308 -0.522 -3.460 -3.982
5 5 95 578.692 -0.960 -1.540 -2.500
Center 0 5 100 577.794 2.245 -6.030 -3.785
Down
Stream
of Canal
-5 5 105 579.550 -4.390 2.750 -1.640
-10 5 110 579.129 1.052 0.645 1.697
-15 5 115 579.330 -0.503 1.650 1.148
-20 5 120 579.654 -0.810 3.270 2.460
-25 5 125 579.951 -0.743 4.755 4.013
-30 5 130 579.761 0.475 3.805 4.280
-40 10 140 579.016 3.725 0.160 3.885
-60 20 160 579.000 0.160 0.000 0.160
-80 20 180 579.000 0.000 0.000 0.000
-100 20 200 579.000 0.000 0.000 0.000
Total Area, A = 111.117
Level Difference, H =
E×k
u
= 1.111 m Fall = H/L = 0.006, i.e. = 1 in 180

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 10

Fig. 2.3: Longitudinal Section of Nalla
Cross Section
Table 2.2: Cross Section
Sl. No
HFL
(m)
Survey Data
Differenc
e in Bed
Level (m)
Breadth
of
Flow(m)
Depth
of
Flow
(m)
Area
(m
2
)
Wetted
Perimeter
(m)
Distanc
e (m)
Bed
Level
(m)
1 579.212 30 580.500 0.000 0 0.000 0.000 0.000
2 579.212 25 580.049 0.000 0 0.000 0.000 0.000
3 579.212 20 579.598 0.000 0 0.000 0.000 0.000
4 579.212 15 579.147 0.089 5 0.044 0.222 5.000
5 579.212 10 578.696 0.540 5 0.314 1.572 5.002
6 579.212 5 578.245 0.991 5 0.765 3.827 5.005
7 579.212 0 577.794 1.442 5 1.216 6.082 5.005
8 579.212 -5 578.245 0.991 5 1.216 6.082 5.000
9 579.212 -10 578.696 0.540 5 0.765 3.827 5.005
10 579.212 -15 579.147 0.089 5 0.314 1.572 5.005
11 579.212 -20 579.598 0.000 0 0.044 0.000 0.000
12 579.212 -25 580.049 0.000 0 0.000 0.000 0.000
13 579.212 -30 580.500 0.000 0 0.000 0.000 0.000
TOTAL = 23.187 35.022
577.500
578.000
578.500
579.000
579.500
580.000
580.500
581.000
0 20 40 60 80 100 120 140 160 180 200 220
Nalla Bedlevel (m)
Length (m)
LONGITUDINAL SECTION
L/S

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 11

Fig. 2.4: Cross Section
Cross sectional Area, A = 23.187 m
2

Wetted perimeter, P = 35.022 m
Hydraulic mean radius, R = 0.662 m
Slope, S =
e
eAg

Velocity, V =
e
h
× R
1/3
× S
1/2
=
e
gtghv
× 0.662
1/3
×
1
180
1/2
= 1.618 m/s
Discharge, Q = A × V = 37.511 m
3
/s
2.4.5. CONCLUSIONS
Table 2.3: Design Discharge
Sl. No. Method
Discharge
(m
3
/s)
Remark
1 Dicken's 20.63 -
2 Ryve's 26.23 Madras Presidency
3 Ingli's 83.83 Bombay Presidency
4 Rational 25.31 -
5 Modified Rational 23.20 As per RBF 16
6 Area Velocity 37.51 -

From above Ingli’s formula is yielding more discharge, since it is used in Western Ghats
(Bombay Presidency) and it is comparatively high with respect to other empirical formula, hence it is
neglected.
577.500
578.000
578.500
579.000
579.500
580.000
580.500
581.000
-40 -30 -20 -10 0 10 20 30 40
Reduced Level (m)
Chainage (m)
CROSS-SECTION
BEDLEVEL
HFL

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 12
As per article 6.2.1 page 21 of IRC:SP 13-2004, the maximum flood discharge to be
adopted for design should be higher of the above values as design discharge Q, provided it does not
exceed the next highest discharge by more than 50%.
As per above clause,
First maximum discharge = 37.51 m
3
/s
Second maximum discharge = 26.23 m
3
/s
Design flood discharge Q,
should not exceed = 1.5 × 26.23 = 39.345 m
3
/s
From the above table,
Design flood discharge, Q = 37.51 m
3
/s is adopted from area velocity method.

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 13












CHAPTER 03
HYDRALICS

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 14
3.1. VENT WAY REQUIREMENTS
Design flood discharge = 37.510 m
3
/s
Observed high flood level = 579.212 m
Lowest nalla bed level = 577.794 m
Depth of water in nalla = 1.418 m
Canal bed level = 580.928 m
Depth below CBL,
i.e. available vent height = 2.654 m
Maximum allowable velocity = 2.700 m/s (Cl. 8.8.5, Pg 6, IS 10430-2000)
Area of flow required =
Q
V
(Q = A× V)
=
37.51
2.7

= 13.893 m
2

Providing vent height = 2.654 m
Vent width required = 5.235 m
Say vent width required = 3 m in 2 Nos.
Nalla width at crossing = 25 m
Area of vent provide = 2 × 3 × 2.654
= 15.924 m
2

Total area of flow provided is more than required, Hence OK
∴ Provide two vent of 3 m width x 2.654 m depth box culvert. Also, provide splayed wing
walls with returns on either side of the vents since the width of nalla at crossing is greater than the
vent way.
Check for velocity =
.MURT
TRUpEm
= 2.356 m/s
The velocity in the vent is less than the allowable maximum permissible limit, hence safe
Wetted perimeter of vents when full = 22.616 m
Hydraulic mean radius = 0.704
Longitudinal slope = 1 in 440
The longitudinal slope of culvert floor is flatter; hence make up the slope to 1:100.

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 15
3.2. SCOUR DEPTH CALCULATION
Normal scour depth, D =
DUmM.0102
Y3l
8
54
Y3l
(Clause 7.5, IRC SP: 13-2004)
K
sf = 0.35 (For silt, table 7.1, IRC SP: 13)
D =
DUmM.010.MURT
Y3l
DU.R
Y3l
= 2.247 m
Maximum scour depth = 1.27 x D (Cl. 10.4, IRC SP: 13– 2004)
= 2.854 m
Maximum scour level = H F L - Maximum scour depth
= 579.212 – 2.854
= 576.358 m
Depth of soft rock,
below nalla bed level = 3.2 m
Scour level = Nalla bed level – Top of soft rock
= 577.794 – 3.2
= 574.594 m
Hence provide cut off wall up to RL 574.594 m below lowest nalla be level.
Length of Barrel

Fig. 3.1: Length of Barrel
Width of head wall = 0.300m
FBL = 582.678m
RL of head wall = 581.748m
Side slope = 1.5:1
Banking width = (FBL – RL of head wall) × 1.5
= (582.678 -581.748) × 1.5
= 1.400m (one side)
Width of inspection path = 3.000m
Width of service road = 5.500m

Design and Detailing of Box Culvert

Department Of Civil Engineering, BIT Page 16
Top width of canal = 6.700m
Barrel length = 2 × 0.3 + 2 × 1.4 + 3 + 5.5 + 6.7
= 18.600m
3.3. CALCULATION OF AFFLUX
Calculation of afflux is as per cl. 8.4.4.2 of IS 7784 (Part 1): 1993
h = [
'
(
TMUVV
+ 0.01524] × [
k
(
f
(
– 1]
A
2
= c/s area before construction
= 13.893 m
2
(from Cl. 3.1, pg. 14)
a
2
= c/s area after construction
= (2.654 x 3.00) x 2
= 15.924 m
2

= [
EU.RS
(
TMUVV
+ 0.01524] × [
T.UVp.
(
TRUpEm
(
– 1]
= -0.078 < 0
Hence no afflux
Top of Vent = Average Bed Level + Vent Height + Afflux +
Top Slab Thickness
Top of Vent = 577.794 + 2.654 + 0.000 + 0.400
= 580.848 m

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 16











CHAPTER 4
LOAD CALCULATIONS

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 17

4.1. DESIGN DATA
I. Box Details
1. Box clear width = 3.000 m
2. Box clear height = 2.654 m
3. Box barrel length = 18.600 m
4. No. of cell = 2.000 Nos.
5. Bottom slab thickness = 0.450 m
6. Top slab thickness = 0.400 m
7. Wall thickness = 0.400 m
8. Wall thickness (intermediate) = 0.200 m
9. Wall height (including slabs) = 3.504 m
10. Haunch horizontal (Bottom slab) = 0.600 m
11. Haunch vertical (Bottom slab) = 0.200 m
12. Haunch horizontal (Top slab) = 0.600 m
13. Haunch vertical (top slab) = 0.200 m
14. Height of soil on box = 1.830 m

Fig. 4.1: Dimensions of Box Culvert
II) MATERIALS
Grade of Concrete = M-25
Grade of Reinforcing Steel = Fe-500
III) DURABILITY (As per IRC: 112-2011)
Condition of exposure = Moderate (Cl.14.3.1 Table 14.1/ pg. 141)
Clear Cover = 75 mm (Cl.14.3.2.1 Table 14.2/ Note 7)
Minimum grade of Concrete = M-25 (Moderate condition)

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 18

IV) DESIGN PARAMATERS FOR RCC DESIGN
a) Reinforcement (Cl. 6.2 of IRC: 112-2011)
Grade of Steel = Fe-500
Characteristic Strength of Steel (f
y) = 500 N/mm
2

Material Factor (ϒ
s) = 1.15
Modulus of Elasticity (E
s) = 200000N/mm
2
b) Concrete (Cl. 6.4 of IRC: 112-2011)
Grade of Concrete = M-25
Characteristic Strength of Concrete (f
ck) = 25 N/mm
2

Material Factor (ϒ
s) = 1.50
Coefficient of Friction (μ) = 0.50
Modulus of Elasticity (E
c) = 25000 N/mm
2

Design value considered (0.446*f
ck) = 11.15 N/mm
2

c) Constants
Modular ratio m =
E
s
Ec
(1 + φ)
= 20.8
V) SOIL DATA AS PER SOIL TEST REPORT
1. Saturated density of soil γ
s = 20.000 kN/m
3

2. Angle of internal friction of soil Φ = 30.000˚
3. Angle of wall friction δ =

C
x Φ = 20.000 ˚
4. Angle which earth surface makes
with horizontal β = 0.000 ˚
5. Wall inclination to backfill α = 90.000 ˚
6. Co-efficient of earth pressure k
o = 1-sin Φ = 0.500
7. Soil bearing capacity = 200.000 kN/m
2

VI) REFERENCE CODES
IRC: 6-2014 Standard Specifications and Code of Practice for Road Bridges,
Section: II Loads and Stresses
IRC: 112-2011 Design Criteria for Concrete Road Bridges
IRC: 78-2014 Standard Specifications and Code of Practice for Road Bridges,
Section: VII Foundations and Substructures

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 19

4.2. LOAD CALCULATIONS
4.2.1. DEAD LOAD (Cl. 203, pg. 5, IRC: 6-2014)
Volume of top slab = 6.6 x 0.40 x 1
= 2.8 m
3

Volume of bottom slab = 6.6 x 0.45 x 1
= 3.15 m
3

Volume of side walls = 2 x 3.08 x 0.4 x 1
= 2.123 m
3

Volume of center wall = 3.08 x 0.2 x 1
= 0.531 m
3

Total volume = 8.690 m
3

Therefore, total weight of concrete = 8.690 x 25
= 217.250 kN
Effective width = 0.2 + 3 + 0.2 + 3 + 0.2
= 6.600 m
∴ Base pressure due to self-weight =
217.25
6.6 × 1
= 32.91 kN/m
4.2.2. SUPER IMPOSED DEAD LOAD
a) At soil section
Soil depth = (FBL – CBL) + canal lining
= (582.678 - 580.925) + 0.08
= 1.83 m
Therefore, weight of soil on top of box = (1.83 x 20)
= 36.6 kN/m
2

Therefore, base pressure due to soil weight = (36.6 x 1)
= 36.6 kN/m
b) At canal section:-
Depth of water = FBL – CBL
= 582.678 - 580.928
= 1.75 m
Therefore, weight of water = 1.75 x 10 x 1
= 17.5 kN/m
2

Depth of canal lining = 0.08 m
Therefore, weight of canal lining = 0.08 x 25 x 1

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 20

= 2.0 kN/m
2

Therefore, total weight at canal section = 17.5 + 2
= 19.5 kN/m
2

Base pressure at canal section = 19.5 x 1
= 19.5 kN/m

4.2.3. EARTH PRESSURE (Cl. 214, pg. 41, IRC: 6-2014)

Fig. 4.2: Earth Pressure
Earth pressure at mid depth of top slab = k
0 x γ x h
Earth pressure at rest k
0 = 1- sin (ϕ)
= 1- sin (30)
= 0.5
At mid depth of top slab = 0.5 x 20 x (1.83 +
0.4
2
)
= 0.5 x 20 x 2.03
= 20.3 kN/m
At mid depth of bottom slab = 0.5 x 20 x (1.83+0.4+2.654+
0.45
2
)
= 0.5 x 20 x 5.109
= 50.28 kN/m
4.2.4. LIVE LOAD SURCHARGE
As per Cl. 214.1, IRC: 6-2014,
Surcharge due to live load equivalent to 1.2m
earth fill = 0.5 x 20 x 1.2
= 12.0 kN/m
2

Top Slab
3.079
LLSEarth
PtressureBottom Slab

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 21

4.2.5. LIVE LOADS
4.2.5.1. CLASS 70R WHEELED

Fig. 4.3. Class 70R (Wheeled)
Maximum possible wheel load is in case of maximum
Single axle load = 5000 kg
Maximum tyre pressure = 5.273 kg/cm
2

(Fig. 1, IRC: 6-2014)
Contact area =
5000
5.273
= 948.227 cm
2

For 70R wheeled, tyre width = 41 cm
(Fig. 1, IRC: 6-2014)
For 70R wheeled, thread width = (41 – 5) = 36 cm
(Note 3, Annex A, IRC: 6-2014)
Contact length =
INSE C
C.
= 26.34 cm
Consider type "L" tyres:-
From Fig. 1, IRC: 6-2014, we have,
Diameter of tyre = 0.61 m
Effective tyre width = 0.86 m
Spacing between tyres = 0.86 – 2 x 0.41
= 0.04 m
Effective thread width = 2 x 0.36 + 0.04
= 0.76 m
Over all axle length = 2.79 m
Effective axle length = 2.79 – 0.76
= 1.93 m

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 22


Fig 4.4: Wheel Arrangement- 70R Wheeled
Dispersion angle = 45˚
(Cl. B3.4, Annex B3, IRC: 112-2011)
Dispersion dimension along road = 0.263 + 2 x 1.83
= 3.923 m
Dispersion dimension across road = (2.79 + 2 x 1.93) = 6.350 m

Fig 4.5: Dispersion of Load- 70R Wheeled
Therefore, Intensity =
Load × Impact factor
Dispersion area

Impact factor = 1.25
(Cl.208.3.a, IRC: 6-2014)

LOAD
(tonnes)
INTENSITY
(kN/m
2
)
17.0 8.5
12.0 6.0
8.0 4.0

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 23

Case 1: Load on entry span only, first two axles of 17t concentrically placed on the span

Fig. 4.6: Class 70R (Wheeled) Case 1 Dispersion
Upward Bearing pressure σ =
P
1
±
Pe
B

P
A
=
SEoO EICxSEoOCEI
.E.Oe
= 8.82 kN/m
2

Z =
1×6.6
2
6
= 7.26 m
3

Pe
z
=
taSEoO EICOeESCSiLlLtSEoOCEI OsEIFi
FE .

=
-78.02
7.26
= -10.76 kN/m
2

σ
max = 8.82 + 10.76 = 19.57 kN/m
2

σ
min = 8.82 – 10.76 = -1.93 kN/m
2


Case 2: Load on central wall, 2
nd
and 3
rd
axels placed equidistant from the central wall

Fig 4.7: Class 70R (Wheeled) Case 2 Dispersion

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 24

P
A
=
2×8.5×3.3+2×8.5×0.44+2×8.5×2.37
6.6×1
= 15.738 kN/m
2

Z =
eO.E.
g
.
= 7.260 m
3

Pe
z
=
aL(8.5×2.37×2.115) – (8.5×3.74×1.43) + (8.5×2.37×2.115) + (8.5×3.74×1.43)
7.26

=
0
7.26
= 0 kN/m
2

σ
max = 15.74 + 0 = 15.74 kN/m
2

σ
min = 15.74 – 0 = 15.74 kN/m
2
Case 3: The first two 17t axels placed concentrically on the second span

Fig. 4.8: Class 70R (Wheeled) Case 3 Dispersion
P
A
=
SEoOeESexSEoOCEeSxSEoOCEI xSEoO EIC
6.6×1
= 15.738 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
aL(8.5×1.81×2.395) – (8.5×3.18×1.71) + (8.5×3.92×0.97) + (8.5×2.93×1.835)
7.26

=
-5.05
7.26
= -0.7 kN/m
2

σ
max = 15.25 + 0.7 = 15.95 kN/m
2

σ
min = 15.25 – 0.7 = 14.55 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 25

4.2.5.2. CLASS 70R MAXIMUM BOGIE LOAD

Fig. 4.9: Class 70R max bogie load
Intensity =
20×1.25
3.92×6.35
= 10.0 kN/m
2

Case 1: Load on first span

Fig. 4.10: Class 70R max bogie load case 1 dispersion

P
A
=
10×3+10×3.92
6.6×1
= 10.50 kN/m
2

Z =
1×6.6
2
6
= 7.26 m
3

Lmn
f
=
- (10×3×1.8)-(10×3.92×1.04)
7.26

=
-94.77
7.26
= -13.05 kN/m
2

σ
max = 10.5 + 13.05 = 23.535 kN/m
2

σ
min = 10.5 – 13.05 = -2.565 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 26

Case 2: Boogie placed concentrically on the center wall

Fig. 4.11: Class 70R max bogie load case 2 dispersion
P
A
=
OesOCEI
.E.Oe
= 11.88 kN/m
2

Z =
1×6.6
2
6
= 7.26 m
3

Pe
z
=
atesOCEI OsE.eiatesOCEI OsE.ei
7.26

=
0
7.26
= 0 kN/m
2

σ
max = 11.88 + 0 = 11.88 kN/m
2

σ
min = 11.88 – 0 = 11.88 kN/m
2

Case 3: Load on second span

Fig. 4.12: Class 70R max bogie load case 3 dispersion

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 27

P
A
=
10×3.92+10×3
6.6×1
= 10.5 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
(10×3.92×1.04) + (10×3×1.8)
7.26

=
94.77
7.26
= 13.05 kN/m
2

σ
max = 10.5 + 13.05 = 23.55 kN/m
2

σ
min = 10.5 – 13.05 = -2.55 kN/m
2


4.2.5.3. CLASS 70R TRACKED

Fig 4.13: Class 70R Tracked- Wheel Configuration
Dispersion along road = 4.57 + (2 x 1.83) = 8.23 m
Dispersion across road = 2.90 + (2 x 1.83) = 6.56 m
Intensity =
70 × 1.25
6.6 × 6.56
= 20.21 kN/mm
2

P
A
=
20.21×6.6
6.6×1
= 20.21 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
-(20.21×3.3×1.65) + (20.21×3.3×1.65)
7.26

=
0
7.26
= 0 kN/m
2

σ
max = 20.21 + 0 = 20.21 kN/m
2

σ
min = 20.21 – 0 = 20.21 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 28

4.2.5.4. CLASS A SINGLE LANE


Fig. 4.14: Class A Single Lane- Wheel Configuration

Impact factor =
4.5
6+L
=
NEo
.xCEC
= 1.48

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 29


Axle
Load
(tonne)
Contact Area Dispersion

Intensity
(kN/m
2
)
B
(mm)
W
(mm)
Along
road(m)
Across
road(m)
Single
Lane
Double
Lane
11.4 250 500 3.91 5.96 7.25 14.50
6.8 200 380 3.86 5.84 4.50 9.00
2.7 150 200 3.81 5.66 1.85 3.70

Case 1: Two 11.4t axels placed equidistant from mid span of first span

Fig. 4.15: Class A Single Lane Case 1 dispersion
P
A
=
FE oOCEsexFE oOCEIexeESoOCxeESoOeEIo
6.6×1
= 9.09 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
vLtTEAROUEDPOPEriatFE oOCEIeOeEsoixteESoOCEsoOeESixteESoOeEIoO ECoi
7.26

=
-51.21
7.26
= -7.05 kN/m
2

σ
max = 9.09 + 7.05 = 16.14 kN/m
2

σ
min = 9.09 – 7.05 = 2.04 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 30

Case 2: The two 11.4t axels are placed equidistant from center support

Fig. 4.16: Class A Single Lane Case 2 dispersion
P
A
=
FE oOCEIexFE oOCEIe
6.6×1
= 8.61 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
vLtTEAROUEuPODERuRixtFE oOCEIeOsEoIoi
7.26

=
0
7.26
= 0 kN/m
2

σ
max = 8.61 + 0 = 8.61 kN/m
2

σ
min = 8.61 – 0 = 8.61 kN/m
2


Case 3: Two 11.4t axels placed equidistant from mid span of second span

Fig. 4.17: Class A Single Lane Case 3 dispersion

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 31

P
A
=
NEoOeEISxFE oOCEIexFE oOCEse
6.6×1
= 8.952 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
atNEoOeEISO ECeixtTEAROUEuPOPEDRDixtFE oOCOeESi
7.26

=
48.33
7.26
= 6.66 kN/m
2

σ
max = 8.952 + 6.66 = 15.61 kN/m
2

σ
min = 8.952 – 6.66 = 2.292 kN/m
2


4.2.5.5. CLASS A DOUBLE LANE
Case 1: Two 22.8t axels placed equidistant from mid span of first span

Fig. 4.18: Class A Double Lane Case 1 dispersion
P
A
=
eNEoOCEsexeNEoOCEIexCEFOCxCEFOeEIo
6.6×1
= 17.978 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
vLtP)EROUEDPOPEriateNEoOCEIeOeEsoixtCEFOCEsoOeESixtCEFOeEIoO ECoi
7.26

=
-100.82
7.26
= -13.89 kN/m
2

σ
max = 17.978 + 13.887 = 31.865 kN/m
2

σ
min = 17.978 – 13.887 = 4.091 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 32

Case 2: The two 22.8t axels are placed equidistant from center support

Fig. 4.19: Class A Double Lane Case 2 dispersion
P
A
=
eNEoOCEIexeNEoOCEIe
6.6×1
= 17.18 kN/m
2

Z =
eO.E.
g
.
= 7.26 m
3

Pe
z
=
vLtP)EROUEuPODERuRixteNEoOCEIeOsEoIoi
7.26

=
0
7.26
= 0 kN/m
2

σ
max = 17.18 + 0 = 17.18 kN/m
2

σ
min = 17.81 – 0 = 17.18 kN/m
2

Case 3: Two 22.8t axels placed equidistant from mid span of second span

Fig. 4.20: Class A Double Lane Case 3 dispersion

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 33

P
A
=
da2/dmf2g/1aε/d2f2g/1aε/52
6.6×1
= 17.90 kN/m
2

Z =
2ae/e
6
e
= 7.260 m
3

Pe
z
=
0Tda2/dma /ε2.fTu(/San/yuau/iSi.fT2g/1aεa2/m.
7.26

=
96.666
7.26
= 13.315 kN/m
2

σ
max = 17.903 + 13.315 = 31.218 kN/m
2

σ
min = 17.903 – 13.315 = 4.588 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 34











CHAPTER 5
STRUCTURAL ANALYSIS
OF
BOX CULVERT

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 35

The culvert is designed as a closed RCC structure. It is analyzed as plane frame of unit width
using standard STAAD.Pro software for DL+SIDL+EP+LL. The cross section is modeled with beam
members for 2D analysis. Since the bridge is resting on soil, the base slab is modeled considering
hinged support.
5.1. DESIGN SECTION FORCES:-
Section considered for design is as follows

Fig. 5.1: Sections


Fig. 5.2: STAAD Model Dimensions
1a 2a 3a
1 2 3
4
5
6

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 36




Fig. 5.3: Node Numbers


Fig. 5.4: Beam numbers

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 37



Fig. 5.5: Bending Moment Diagram due to Dead Load



Fig. 5.6: Bending Moment Diagram due to SIDL

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 38

Fig. 5.7: Bending Moment due to Lateral Earth Pressure



Fig. 5.8: Bending Moment due to Live Load Surcharge

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 39


Fig. 5.9: Bending Moment due to Live Load (CLASS A 2 Lane governing)

5.2. COMBINATION OF LOADS FOR LIMIT STATE DESIGN
a) Partial Safety Factor for verification of Structural Strength:
Only Basic Combination is applicable for the design of superstructure.
As per Amendment to IRC: 6-2014, Table 3.2, pg. 44
Table 5.1: Load combination for Ultimate Limit State of Strength
LOADS BASIC LOAD COMBINATION
Dead Load 1.35
Super Imposed Dead Load (SIDL) 1.35
Backfill Weight 1.50
Earth Pressure due to backfill
1.50 (Adding to Effect of Variable Load)
1.00 (Relieving to Effect of Variable Load)
Live Load Surcharge 1.20
Live Load 1.50
As per Cl 219.5.4 of IRC: 6, the additional earth pressure due to seismic need not be
considered.

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 40

b) Partial Safety Factor for verification of Serviceability Limit State:
As per Amendment to IRC: 6-2014, Table 3.3, pg. 46
Table 5.2: Load combination for Limit State of Serviceability
LOADS
RARE
COMBINATION
QUASI-
PERMANENT
Dead Load 1.00 1.00
Super Imposed Dead Load (SIDL) 1.00 1.00
Backfill Weight 1.00 1.00
Earth Pressure due to backfill 1.00 1.00
Live Load Surcharge 0.80 -
Live Load 1.00 -
As per Cl 219.5.4 of IRC: 6, the additional earth pressure due to seismic need not be
considered.
Rare Combination : To check for the stress limit in the member
Quasi-Permanent : To check for crack width and deflection in the member.

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 41

Table 5.3: Design Forces from STAAD Pro.
Member Section
Moment (kN-m)
Shear
Force
(kN)
Ultimate Moment
(Basic
Combination)
Serviceable
Moment (Rare
Combination)
Serviceable
Moment
(Quasi-
Permanent
Combination)
Top Slab
1 73.087 50.533 33.668 164.966
2 -67.6242 -46.6728 -25.714 -5.530
3 87.722 63.570 43.717 -173.138
Bottom Slab
1a -73.454 -50.356 -36.850 -186.531
2a 63.669 44.201 31.471 13.705
3a -113.576 -82.880 -60.580 196.619
Side Wall
4 73.547 49.432 33.670 -92.774
5 -44.103 -27.844 -23.170 -5.879
6 74.394 48.882 36.850 121.592
Center Wall
4a 2.745 0.000 0.000 -1.125
5a 0.000 0.000 0.000 -1.125
6a -0.720 0.000 0.000 -1.125

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 42











CHAPTER 06
STRESS-BLOCK PARAMETERS

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 43

6.1. CALCULATION OF STRESS BLOCK PARAMETER


Fig.6.1: Stress Block Parameters
Z = lever arm = (d – k
2xu)
From similar triangles in strain diagram, we have

ε
cu
x
u
=
ε
s
(d - x
u)
ε
s =
(d - x
u) × ε
cu
x
u

ε
s xu + εcu xu = ε cu d
ε
cu
ε
s+ ε
cu
=
ε
cu
ε
s+ ε
cud; where,
x
u = neutral axis
d = effective depth of section
b = breadth of section
ε
cu = strain in concrete
ε
s = strain in steel
x
u = depth of neutral axis in m
f
ck = grade of concrete in N/mm
2

As per IRC: 112, ε
cu= 0.0035 and strain at which stress reaches design strength εo = 0.002

Fig.6.2: Stress Block Parameters-Values
εs
xu
C/S Strain diagram
Cu
Stress diagram
d
d-xu
εcu k1fck
xu
d-k2xu
Tu
d
xu
0.0035
d-0.42xu
0.42xu
Cu
Tu
0.446fck
d-xu
0.002

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 44

0.0035
x
u
=
0.002
x
1

x
1 =
0.002 × x
u
0.0035

x
1 = 0.571 x u
=
4
7
xu
x
2 = x u - x1
= x
u - 0.571 xu
= 0.429 x
u
=
3
7
xu
 Area of stress block,
A = A
1+ A2
= (0.45 × f ck × 0.429 × xu) + (
2
3
p × 0.45 × fck × 0.571 × xu)
A = 0.3645 × f
ck × xu
 Calculation of depth of Neutral Axis,
x =
ΣA
i×x
i
ΣA
i

Σ (Aixi) = 2(
2
3
p× 0.45 × f
ck×
4
7
p O 0
u) × (
3
7
p O 0
u+
3
8
p O
4
7
p O 0
u)3 +

20.45 × f
ck ×
3
7
p× x
u ×
3
7
p ×
x
u
2
p3
= 0.1515 × f
ck × xu
2
x =
0.1515 × f
ck × x
u
2
0.3645 × f
ck × x
u
x = 0.42 x u
Centroid of compression force acts at a distance of 0.42 x
u from compressive fiber.
Case 1: Balanced Section
In Balanced section, xu=xumax

Fig.6.3: Stress Block Parameters-Balanced section
xumax
0.0035
Z=d-0.42xu
0.42xu
Cu
d
Tu=0.87fyAst
0.446fck
d-xumax
0.002+ (0.87fy/Es)

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 45

At Equilibrium:
C
u = T u
0.36×f
ck× xu max ×b = 0.87× fy ×Ast max
xu max =
0.87×f
y×A
st max
0.36×f
ck×b

Dividing both sides
by‘d’, we obtain
x
u max
d
=
0.87×f
y×A
st max
0.36×f
ck× b × d

But
A
st max
b×d
= p t max
p
t max =
x
u max
d
×
0.36×f
ck
0.87×f
y
; where,
p
t max = limiting percentage of steel
Applying initial triangles to strain diagram,
0.0035
x
u max
=
0.002 +
0.87×fy
Ɛs
d - x
u max

x
u max
d
=
0.0035
0.0055+
0.87 ×fy
Ɛs
; where,
ε
s = 2× 10
o
N/mm
2

fy
x
u max
d

250 0.53
415 0.48
500 0.46

Calculating Moment of Resistance:
M
u lim = C u × Z
= 0.36×f
ck×xu max ×b× (d-0.42×xu max)
= 0.36×f
ck×
b
u max
d
×b× (d-0.42×
b
u max
d
) × d
2


Case 2: Under Reinforced Section
In this section, tensile strain in steel attains its limiting value first and at this point the
strain in extreme compressive fiber is less than limiting strain.
ε
s < εcu
Neutral axis depth is obtained by equilibrium condition

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 46

0.36×f
ck× xu ×b = 0.87× fy ×Ast
x
u =
0.87×f
y×A
st
0.36×f
ck×b
…………………………………… (a)
Moment of Resistance
M
u = Tu x Z
= 0.87 × f
y × Ast × (d - 0.42 xu)
= 0.87 × f
y × Ast × (1 -
1 xDt)
u
d
) × d
From a,
)
u
d
=
0.87×f
y×A
st
0.36×f
ck× b × d

M
u = 0.87 × f y × Ast × (1 -
0.42×2.417×f
y×A
st
f
ck× b × d
) × d
=
0.87 × fy × Ast × (1 -
1.015×f
y×A
st
f
ck× b × d
) × d
M
u = 0.87 × fy × Ast × (1 -
f
y×A
st
f
ck× b × d
) × d

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 47











CHAPTER 07
STRUCTURAL DESIGN
OF
BOX CULVERT

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 48


Table 7.1: Design of sections for flexure (Ultimate Limit State of Strength)
Member Section
Moment
(kNm)
d req
(mm)
D
(mm)
d
(mm)
Main Steel Distribution Steel
Ast
(mm
2
)
A
stmin
(mm
2
)

Bar
Dia
(mm)
Spacingreq
(mm)
Spacing
pr
(mm)
A st(pr)
(mm
2
)
Astmin
(mm
2
)

Bar
Dia
(mm)
Spacing
(mm)
Top Slab
1 73.087 150 400 320 543.80 416 10 140 115 682.609 416 8 120
2 67.624 150 400 320 501.79 416 10 150 140 560.714 416 8 120
3 87.722 170 400 320 657.52 416 10 110 100 785.000 416 8 120
Bottom
Slab
1a 73.454 150 450 370 468.47 481 10 160 115 682.609 481 8 100
2a 63.669 140 450 370 404.63 481 10 160 130 603.846 481 8 100
3a 113.576 190 450 370 735.23 481 10 100 85 923.529 481 8 100
Side
Walls
4 73.547 150 400 320 547.34 416 10 140 115 682.609 416 8 120
5 44.103 120 400 320 323.54 416 10 180 150 523.333 416 8 120
6 74.394 150 400 320 553.88 416 10 140 115 682.609 416 8 120
Middle
Wall
4a 2.745 30 200 155 40.949 201.5 12 300 200 565.200 201.5 8 240
5a 0.000 0 200 155 0.000 201.5 12 300 200 565.200 201.5 8 240
6a 0.720 20 200 155 10.699 201.5 12 300 200 565.200 201.5 8 240

As per Cl. 7.6.4.1, pg. 57, IRC: 112-2011, axial force in side walls i.e. 221kN in Beam no. 5 and 172kN in Beam no. 7 is less than
0.1f
cdAc = 0.1 x 11.15 x (0.4 x 1) = 446kN. In center walls the axial force (362kN) is exceeding 0.1fcdAc (223kN). Hence must be checked for
combined axial and bending compression member and is checked as per SP-16.

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 49

7.1. CENTER WALL DESIGN
Breadth of the column = 1000 mm
Overall depth of the column = 200 mm
Factored load P
u = 361.87 kN
Characteristic strength of concrete f
ck = 25 N/mm
2

Characteristic strength of steel f
y = 500 N/mm
2

Clear height of compression member (l
o) = 2654 mm
Effective length (0.7xl
o) = 1857.8 mm
Factored moment M
u = 2.59 kNm

Assuming 10mm dia bars with 40mm clear cover
Effective cover d

= (40 + (10/2))
= 45 mm
d

/D = 0.23
Pu
f
ck bD
=
361.87
25 x 1000 x 200

= 0.07237
Mu
f
ckbD
2 =
2.59
25 x 1000 x 200
2
= 0.003
P
f
ck
= 0 (chart 38, SP-16)
P
t = 0
Minimum area of steel, A
st min (0.13*1000*155) = 201.5 mm
2


As per Cl. 16.3.1, pg. 173, IRC: 112-2011,
 The diameter of bar should not be less than 12mm.
 The total area of the vertical reinforcement should be between 0.0024A
c and 0.04Ac outside
the locations of laps of vertical steel.
 This reinforcement should be provided at two faces taking into account the direct axial force
and biaxial bending, but shall not be less than 0.0012A
c on either face.
 The distance between two adjacent vertical bars shall not exceed 200.
∴ Provide 12mm dia bars at 200mm c/c
Area of steel provided, A
st pro =
π x 12
2
4
200
x 1000 = 565.416 mm
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 50


Table 7.2: Design of sections for shear (Ultimate Limit State of Strength)
Member Section
Shear,
V
NS
(kN)
Check for shear
z θ ρ w Legs
Bar
Dia
(mm)
A
sv
(mm
2
)
Spacing
(mm)
ρ1 k V Rd.c Requirement
Top Slab
1 164.966
0.002 1.791 118.842 Required 237.84 21.801 0.72
4 8 201.088
240.0
2 5.530
0.002 1.791 118.842 Not Required - - -
4 8 201.088
-
3 173.138
0.002 1.791 118.842 Required 232.83 21.801 0.72
4 8 201.088
240.0
Bottom
Slab
1 186.531
0.002 1.735 131.088 Required 280.73 21.801 0.72
4 8 201.088
270.0
2 13.705
0.002 1.735 131.088 Not Required - - -
4 8 201.088
-
3 196.619
0.002 1.735 131.088 Required 268.47 21.801 0.72
4 8 201.088
270.0
Side
Walls
4 92.774
0.002 1.791 118.842 Not Required - - -
4 8 201.088
-
5 5.879
0.002 1.791 118.842 Not Required - - -
4 8 201.088
-
6 121.592
0.002 1.791 118.842 Required 237.84 21.801 0.72
4 8 201.088
240.0
Middle
Wall
4 1.125
0.002 2.136 74.997 Not Required - - -
4 8 201.088
-
5 1.125
0.002 2.136 74.997 Not Required - - -
4 8 201.088
-
6 1.125
0.002 2.136 74.997 Not Required - - -
4 8 201.088
-

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 51


Table 7.3: Check for Serviceability (Maximum Stress)
Member Section
D
(mm)
Cover
(mm)
Dia
(mm)
Eff
Cover
(mm)
d (mm)
Ast
(mm
2
)
M
(kNm)

xu
(mm)
y (mm) I
cr (mm
4
)
σ
sc
(N/mm
2
)

σc
(N/mm
2
)

Top Slab
1 400.000 75.000 10.000 80.000 320.000 682.609 50.533 82.160 237.840 9.880E+08 253.019 4.202
2 400.000 75.000 10.000 80.000 320.000 560.714 46.673 75.503 244.497 8.407E+08 282.344 4.192
3 400.000 75.000 10.000 80.000 320.000 785.000 63.570 87.170 232.830 1.106E+09 278.373 5.011
Bottom
Slab
1 450.000 75.000 10.000 80.000 370.000 682.609 50.356 89.265 280.735 1.356E+09 216.831 3.315
2 450.000 75.000 10.000 80.000 370.000 603.846 44.201 84.648 285.352 1.225E+09 214.183 3.055
3 450.000 75.000 10.000 80.000 370.000 923.529 82.880 101.528 268.472 1.733E+09 267.000 4.854
Side
Wall
4 400.000 75.000 10.000 80.000 320.000 682.609 49.432 82.160 237.840 9.880E+08 247.506 4.111
5 400.000 75.000 10.000 80.000 320.000 523.333 27.844 73.275 246.725 7.938E+08 180.017 2.570
6 400.000 75.000 10.000 80.000 320.000 682.609 48.882 82.160 237.840 9.880E+08 244.752 4.065
Middle
Wall
4 200.000 75.000 12.000 81.000 119.000 565.200 0.000 42.408 76.592 9.439E+07 0.000 0.000
5 200.000 75.000 12.000 81.000 119.000 565.200 0.000 42.408 76.592 9.439E+07 0.000 0.000
6 200.000 75.000 12.000 81.000 119.000 565.200 0.000 42.408 76.592 9.439E+07 0.000 0.000

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 52


Table 7.4: Check for Serviceability (Crack Width)
Member Section k t f ct eff
h
ceff
(mm)
A ceff
(mm
2
)
ρ
peff ε sm-εcm k 1 k 2
S
r max
(mm)
W
k (mm)
Top Slab
1 0.5 2.9 105.95 105946.66 0.00644 0.000506 0.8 0.5 518.854 0.26
2 0.5 2.9 108.17 108165.74 0.00518 0.000467 0.8 0.5 582.942 0.27
3 0.5 2.9 104.28 104276.70 0.00753 0.000574 0.8 0.5 480.822 0.28
Bottom
Slab
1 0.5 2.9 120.24 120244.84 0.00568 0.000476 0.8 0.5 554.463 0.26
2 0.5 2.9 121.78 121784.05 0.00496 0.000457 0.8 0.5 597.857 0.27
3 0.5 2.9 116.16 116157.43 0.00795 0.000585 0.8 0.5 468.818 0.27
Side
Wall
4 0.5 2.9 105.95 105946.66 0.00644 0.000506 0.8 0.5 518.854 0.26
5 0.5 2.9 108.91 108908.23 0.00481 0.000449 0.8 0.5 608.778 0.27
6 0.5 2.9 105.95 105946.66 0.00644 0.000554 0.8 0.5 518.854 0.29
Middle
Wall
4 0.5 2.9 52.53 52530.74 0.01076 0.000000 0.8 0.5 444.601 0.00
5 0.5 2.9 52.53 52530.74 0.01076 0.000000 0.8 0.5 444.601 0.00
6 0.5 2.9 52.53 52530.74 0.01076 0.000000 0.8 0.5 444.601 0.00

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 53

CHECK FOR DEFLECTION
As per Cl.12.4.1, IRC: 112-2011,
Limiting values of deflection for vehicular loads =
Span
800

Table 7.5: Check for Serviceability (Deflection)
Member Span (m) Deflection (mm)
Permissible
deflection (mm)
Remark
Top Slab 3.300 0.660 4.125 OK
Bottom slab 3.300 0.362 4.125 OK
Hence OK

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 54

7.2. TYPICAL LONG HAND CALCULATION FOR TOP SLAB SECTION 3:
7.2.1. ULTIMATE LIMIT STATE
Ultimate moment M
u = 87.722 kN-m
Ultimate shear V
u = 173.138 kN
Depth required d
required = /
M
u
0.134 ×f
ck × b

= /
SFEoS7es
V
sEeCN7 o7esss

= 161.69 mm
Diameter of the bar ϕ = 10 mm
Depth provided d
provided = overall depth – clear cover –
ϕ
2
p
= 400 – 75 –
10
2
p
= 320 mm
∴ d
provided > d required, hence OK.
Area of steel required A
st =
0.5×f
ck×b×d
f
y
× [1 - /1-
4.6×M
u
f
ck×b×d
2]
=
0.5×25×1000×320
500
× [1 - /1-
4.6×rTERrOes
V
25×1000×320
2]
= 656.429 mm
2

Minimum area of steel A
st min = 0.13% × b × d (Cl. 16.5.1.1, IRC: 112-2011)
=
0.13
100
× 1000 × 320
= 416 mm
2

Spacing required = Least of c
Area of one bar
A
st required
× 1000
2 × d
250

= c
π × 10
2
4
p
656.429
× 1000
2 × 320
250

= X
119.647
640
250
mm
∴ Spacing required = 119.66 mm

However provide spacing = 100 mm

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 55

Area of steel provided, A
st provided =
Area of one bar
Spacing provided
× 1000
=
π × 10
2
4
p
100
× 1000

= 785 mm
2

Distribution Steel
Minimum area of steel A
st min = 0.13% × b × d (Cl. 16.5.1.1, IRC: 112-2011)
=
0.13
100
× 1000 × 320
= 416 mm
2

Use diameter of bar = 8 mm
Spacing =
π × 8
2
4
416
× 1000
= 120.83 mm
Hence provide 8Ø @ 120 mm c/c
7.2.1.2 CHECK FOR SHEAR
As per Cl. 10.3.2, IRC: 112-2011, design shear resistance (V
Rd. c) must be greater than design
shear force acting at the section (V
Ed.)
V
Ed = 173.138 kN
V
Rd.c = [0.12×K×(80× ρ 1×fck)
0.33
+ 0.15×σ cp]×b×d
V
Rd.c > v Rd.c min
> (v
min + 0.15×σ cp) ×b×d
> (0.031×K
3/2
×fck
1/2 + 0.15×σ cp) ×b×d
Where,
K = 1 + /
200
d

= 1 + /
200
320

= 1.791
σ
cp =
N
Ed
A
c
< 0.2 fcd

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 56

=
0
A
c
= 0 (N Ed = 0, no axial force)
ρ
1 =
A
st
b×d
≤ 0.02
=
785
1000×320

= 0.00245
V
Rd.c = [0.12×1.791×(80×.00245×25)
0.33
+0]×1000×320
= 116217 N
= 116.217 kN
v
Rd.c min = 0.031×1.791
3/2
×25
1/2
×1000×320
= 118841.5 N
= 118.842 kN
V
Rd.c = v Rd.c min
= 118.842 kN
V
Rd.c < V Ed
Shear design required.
As per Eq. 10.8, IRC: 112-2011,
V
Rd.max= α cw×b×z×v1×
f
cd
cot θ + tan θ

Where, α
cw = 1 (Eq.10.9, IRC: 112-2011)
z = (d –x
u)
Modular ratio, m =
E×s
Ec eff

Where,
E
s = young's modulus of elasticity of steel in N/mm
2

E
c eff = short term static modulus of elasticity of concrete in N/mm2
E
c eff =
E
c
1+ φ

=
5000×Kf
ck
1+ φ

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 57

=
5000×√25
1+ 1.6

= 9615.385 N/mm
2

Modular ratio, m =
2 × 10
5
9615.385

= 20.8
Neutral axis 1000 ×
x
u
2
2
p = m × A
st × (d - xu)
1000 ×
x
u
2
2
p = 20.8 × 785 × (320 - x
u)
x
u = 87.17 mm
z = (320-87.17)
= 232.83 mm
v
1 = 0.6 × z1 -
f
ck
310
θ (Eq.10.6, IRC: 112-2011)
= 0.6 × z1 -
25
310
θ
= 0.6 × 0.919
= 0.5516
f
cd = α cc ×
ρ
ck
γ
m
(Cl. 10.3.1, IRC: 112-2011)
= 0.67 ×
25
1.5

= 11.167 kN/mm
2

173.138×10
3
= 1×1000×232.83×0.5516×
11.167
cot θ + tan θ

By trigonometric operations,

1
cot θ + tan θ
=
Sin 2θ
2

Sin 2θ =
173.138 × 10
3
× 2
1000 × 232.83 × 0.5516 × 11.167

= 0.242
2θ = Sin
-1
(0.242)
θ =
eCEIF
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 58

θ = 6.986˚ < θ
min (Cl.10.2.2. IRC: 112-2011)
∴ θ = 21.8˚
V
Rd.s =
A
sw
s
×z×fywd×cot θ

A
sw
s
=
eF CEeCSOes
6
z×f
ywd×cot θ

=
eF CEeCSOes
3
232.83×0.87× 500×cot 21.8

= 0.684
ρ
w =
A
sw
s × b × sinα

(Eq. 16.4, IRC: 112-2011; α = 90°, vertical stirrups)
ρ
w min =
0.072×Kf
ck
f
yk
(Eq. 16.5, IRC: 112-2011)
z
1
°>
×
θmin =
0.072×Kf
ck ×b ×1
f
yk

z
1
°>
×
θmin =
0.072×√ o ×1000 ×1
500

= 0.72 > 0.684

A
sw
s
= 0.72
Bar diameter = 8 mm
No. Legs = 4 Nos.
A
sw = 4×
π × 8
2
4

= 201.06 mm
2

s = Least of <
1°>
Z>
0.75×d

= Least of <
201.06
0.72
0.75×320

= Least of Σ
279.289
240

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 59

= 240 mm
7.2.2. SERVICEABILITY LIMIT STATE
In serviceability limit state we check for:
 Permissible stress in concrete and steel for rare combination
 Crack width check for quasi permanent combination
 Deflection check
7.2.2.1 PERMISSIBLE STRESS CHECK
As per Cl. 12.2.1, pg. 120, IRC: 112-2011, the maximum compressive stress in concrete
under rare combinations of loads shall be limited to 0.48f
ck = 0.48 x 25
= 12.0 N/mm
2

As per Cl. 12.2.2, pg. 120, IRC: 112-2011, the maximum tensile stress in steel under rare
combinations of loads shall be limited to 0.80f
y = 0.8 x 500
= 400.00 N/mm
2

We have,
Moment, M = 63.57 kNm
Modular ratio, m = 20.80
x
u = 87.17 mm
To calculate cracked Moment of Inertia
I
cr = z
b×x
u
3
12
+(A×h
2
)θ + m × Ast × (d-xu)
2

= [
1000×87.17
3
12
+1000×87.17×ε
SFEeF

;
2
]+20.8×785×(320-87.17)
2
∴Icr = 1.106×10
9
mm
4

Stress in Steel (σ
sc)
σ
sc =
63.57×10
6
1.106×10
9
× (320 – 87.17) × 20.80
= 278.373 N/mm
2

< (Limiting σsc= 400N/mm
2
)
Stress in Concrete
σ
c =
63.57×10
6
1.106×10
9
× 87.17
= 5.011 N/mm
2

< (Limiting σc= 12 N/mm
2
)
HENCE O.K

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 60

7.2.2.2 CRACK WIDTH CHECK
Serviceable moment M = 43.717 kN-m
Area of steel provided A
st = 785 mm
2

Spacing provided S = 100 mm
Effective cover = 75+
10
2
p mm
= 80 mm
Modular ratio, m =
E×s
Ec eff

Where,
E
s = young's modulus of elasticity of steel in N/mm
2

E
c eff = short term static modulus of elasticity of concrete in N/mm2
E
c eff =
E
c
1+ φ

=
5000×Kf
ck
1+ φ

=
5000×√25
1+ 1.6

= 9615.385 N/mm
2

Modular ratio, m =
2 × 10
5
9615.385

= 20.8
Neutral axis 1000 ×
x
u
2
2
p = m × A
st × (d - xu)
1000 ×
x
u
2
2
p = 20.8 × 785 × (320 - x
u)
x
u = 87.17 mm
Stress in reinforcement, σ
sc =
m × M
u × (d-x
u)
I

Moment of inertia I = I
xx + Ah
2
= [
1000×x
u
3
12
+ 1000 × xu ×
x
u
2
2
p + m × A st × (d-xu)]
= [
1000×87.17
3
12
+1000 × 87.17 ×
87.17
2
2
p+20.8 × 785 ×(320 – 87.17)]
= 1.106 × 10
9
mm
4
σsc =
20.8×43.717×10
6
×(320-87.21)
1.106 × 10
9

= 192.676 N/mm
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 61

As per clause 12.3.4 of IRC: 112-2011,

Crack width, Wk = S r max × (εsm - εcm)
Where,
S
r max = maximum crack spacing
ε
sm = mean strain in the reinforcement under the relevant combination of loads,
including the effect of imposed deformations, restrained thermal and shrinkage
effects and taking into account the effects of tension stiffening. For pre-
stressed members only the additional tensile strain beyond the state of zero
strain of the concrete at the same level is considered.
ε
cm = mean strain in concrete between cracks
ε
sm - εcm =
σ
sc -
kt × f
ct eff
× (1+αe × ρ
p eff
)
ρ
p eff
E
s

0.6×σ
sc
E
s
(eq. 12.6, IRC:112-2011)
Where,
σ
sc = is the stress in the tension reinforcement assuming a cracked section
α
e = m = 20.8
k
t = factor dependent on the duration of the load which may be taken as 0.5
f
ct eff = is the mean of the tensile strength of the concrete effective at the time when
the cracks may first be expected to occur. In calculating the minimum
reinforcement to cater for shrinkage f
cteff should be taken as the greater of 2.9
MPa or f
ctm (t).
= greater of ’
2.9
f
ctm (t)

f
ctm (t) = β
cc (t)
α
× fctm (Eq. 6.7 of IRC:112-2011)
β
cc (t) = exp ’αt Ɛg <t/ε
S
… …j⁄
;K> (Eq. 6.3 of IRC:112-2011)
S = 0.25
t = age of concrete in days
t
1 = 1 day
= exp Uo iat [g <t9ε
S
S P⁄
;]%
= 1
f
ctm = 2.2 (Table 6.5 of IRC:112-2011)

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 62

f
ctm (t) = 1 × 2.2 = 2.2
f
ct eff = greater of Σ
2.9
2.2

= 2.9
ρ
p eff =
A
s
A
c eff
p
A
c eff = effective area of concrete in tension surrounding the reinforcement, of
depth h
c eff
h
c eff = Least of




⎧2.5×(h-d)
(h-x
u)
3
p
h
2
p

= Least of




⎧2.5×(400-320)
(400-87.17)
3
p
400
2
p

= Least of X
200
104.277
200

h
c eff = 104.277 mm

Fig. 7.1: Effective tension area
A
c eff = h c eff × b
= 104.277 × 1000

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 63

= 104277 mm
2

ρ
p eff =
785
104277
p
= 0.0075280
ε
sm - εcm =
192.676 -
0.5 × 2.9 × (1+20.8 ×0.00753)
0.00753
2 × 10
5
= -0.0001502
ε
sm - εcm =
0.6×192.676
2× 10
5

= 0.000578
ε
sm - εcm = Greater of ’
-0.0001502
0.000578

= 0.000578
S
r max = 3.4×c +
0.425×k1×k2×φ
ρ
p eff
(Eq. 12.8, IRC: 112-2011)
Where,
c = clear cover
k
1 = coefficient which takes account of the bond properties of the bonded
reinforcement
= 0.8 for deformed bars
= 1.6 for bars with an effectively plain surface
k
2 = is a coefficient which takes into account of the distribution of strain
= 0.5 for bending
= 1.0 for pure tension
Φ = Diameter of bar
S
r max = 3.4×75 +
0.425×0.8×0.5×10
0.00753

= 480.822 mm
W
k = 480.822 × 0.000578
= 0.278 mm < 0.300 mm (Table 2.1, IRC: 112-2011)

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 64

7.3. CHECK FOR BEARING PRESSURE (Cl. 706, pg. 15, IRC: 78-2014)

Fig. 7.2: Plan of culvert


Fig. 7.3: Longitudinal Section of Box Culvert

Fig. 7.4: Cross Section of Box Culvert
X
Y

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 65

Width of culvert = 7 m
Length of barrel = 18.6 m
Section modulus:
Section modulus along x-direction Z
x=
18.6×7
2
6

= 151.90 m
3

Section modulus along y-direction Z
y=
7×18.6
2
6

= 403.62 m
3

7.3.1. PERMANENT LOADS
Item
Description
Load (P)
(kN)
Eccentricity
(e) (m)
Pe x Zy Pex/Zy
S1 0.5×1.4×0.93×7×20 91.000 -8.300 -755.300 403.620 -1.871
S2 1.4×0.82×7×20 161.000 -8.070 -1299.270 403.620 -3.219
S3 3×1.75×7×20 735.000 -6.100 -4483.500 403.620 -11.108
S4 0.5×2.625×1.75×7×20 322.000 -3.720 -1197.840 403.620 -2.968
W5 0.5×2.625×1.75×7×10 161.000 -2.850 -458.850 403.620 -1.137
W6 1.45×1.75×7×10 179.000 -1.250 -223.750 403.620 -0.554
W7 0.5×2.625×1.75×7×10 161.000 0.350 56.350 403.620 0.140
S8 0.5×2.625×1.75×7×20 322.000 1.220 392.840 403.620 0.973
S9 5.5×1.75×7×20 1347.500 4.850 6535.375 403.620 16.192
S10 1.4×0.82×7×20 161.000 8.070 1299.270 403.620 3.219
S11 0.5×1.4×0.93×7×20 91.000 8.300 755.300 403.620 1.871
S12 7×0.4×18.6×25 1302.000 0.000 0.000 403.620 0.000
S13 7×0.45×18.6×25 1465.000 0.000 0.000 403.620 0.000
S14 2×0.4×2.654×18.6×25 987.000 0.000 0.000 403.620 0.000
S15 0.2×2.654×18.6×25 247.000 0.000 0.000 403.620 0.000
W16 2×3×2.654×18.6×10 2962.000 0.000 0.000 403.620 0.000
Σ P = 10694.500 ΣPe x/Zy = 1.538

P
A
=
10694.5
7×18.6

= 82.139 kN/m
2

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 66

7.3.2. LIVE LOAD
Governing case for live load is Class A double lane

Fig. 7.5: Live Load eccentricity
Wheel No. P (kN) e
x e y Pe x Pe x/zy Pe y Pe y/zx
1 114.000 2.625 3.250 299.250 0.741 370.500 2.439
2 114.000 4.425 3.250 504.450 1.250 370.500 2.439
3 114.000 5.275 3.250 601.350 1.490 370.500 2.439
4 114.000 7.075 3.250 806.550 1.998 370.500 2.439
5 114.000 2.625 2.050 299.250 0.741 233.700 1.539
6 114.000 4.425 2.050 504.450 1.250 233.700 1.539
7 114.000 5.275 2.050 601.350 1.490 233.700 1.539
8 114.000 7.075 2.050 806.550 1.998 233.700 1.539
9 27.000 2.625 -0.600 70.875 0.176 -16.200 -0.107
10 27.000 4.475 -0.600 120.825 0.299 -16.200 -0.107
11 27.000 5.225 -0.600 141.075 0.350 -16.200 -0.107
12 27.000 7.025 -0.600 189.675 0.470 -16.200 -0.107
13 27.000 2.625 -1.700 70.875 0.176 -45.900 -0.302
14 27.000 4.475 -1.700 120.825 0.299 -45.900 -0.302
15 27.000 5.225 -1.700 141.075 0.350 -45.900 -0.302
16 27.000 7.025 -1.700 189.675 0.470 -45.900 -0.302

ΣPex/Zy = 13.548 ΣPey/Zx = 14.275
X
Y

Design and Detailing of Box Culvert
Department Of Civil Engineering, BIT Page 67

7.3.3 PRESSURE CALCULATIONS:
Case 1: Canal and culvert with full water
σ =
P
A
±
P
ex
z
y
±
P
ey
z
x

σ
1 = 82.139 – (1.538+13.548) + 14.275
= 81.328 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
2 = 82.139 + (1.538+13.548) + 14.275
= 111.500 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
3 = 82.139 + (1.538+13.548) - 14.275
= 82.950 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
4 = 82.139 - (1.538+13.548) - 14.275
= 52.778 kN/m
2
> 0 & < SBC = 200 kN/m
2

Case 2: Canal and culvert with no water
σ
1 = 53.180 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
2 = 86.454 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
3 = 57.903 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
4 = 24.629 kN/m
2
> 0 & < SBC = 200 kN/m
2

Case 3: Canal with full water and culvert with no water
σ
1 = 58.579 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
2 = 88.750 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
3 = 60.200 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
4 = 30.029 kN/m
2
> 0 & < SBC = 200 kN/m
2

Case 4: Canal with no water and culvert with full water
σ
1 = 75.929 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
2 = 109.203 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
3 = 80.653 kN/m
2
> 0 & < SBC = 200 kN/m
2

σ
4 = 47.379 kN/m
2
> 0 & < SBC = 200 kN/m
2

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 68










CHAPTER 08
DESIGN
OF
WING WALL

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 69

8.0 DESIGN OF WING WALL
 It is proposed to provide a Cantilever Retaining Wall for the Box Culvert as Wing Walls
 Limit State Method of Design as per IRC: 112-2011 is adopted with partial safety factors as
given in IRC: 6-2014
 For Stability check, factors as per IRC: 78 are used.
i) MATERIALS
Refer to pg. 16, chapter 4, Cl. 4.1 (II)
ii) DURABILITY
Refer to pg. 16, Chapter 4, Cl. 4.1. (III)
iii) DESIGN PARAMATERS FOR RCC DESIGN
a) Reinforcement (Cl. 6.2 of IRC: 112-2011)
Refer to pg. 17, Chapter 4, Cl. 4.1. (IVa)
b) Concrete (Cl. 6.4 of IRC: 112-2011)
Refer to pg. 17, Chapter 4, Cl. 4.1. (IVb)
iv) BACKFILL PROPOERTIES FOR DESIGN
Density of Compacted Backfill (ϒ) = 20 kN/m
3

Angle of Internal Friction (φ) = 30 Deg
Angle between retaining wall & Backfill (α) = 0 Deg
Angle of Wall Friction (δ) = 20.00 Deg
Co-efficient of Active Earth Pressure (k
a)
-For Infinite Backfill
Slope of Backfill surcharge (β) = 0 Deg
K
=
Cos
H
APTα)
Cos
H
α Cos(08DE
×I
G
G8N
OFWAL.iE OFWAL)ME
UBOAY)ME UBOAi.YE
a
enfo
r

= 0.4924
Co-efficient of Active Earth Pressure (k
a)
-For Finite Backfill
Slope of Backfill surcharge (β) = 25.25 Deg
K
=
Cos
H
APTα)
Cos
H
α Cos(08DE
×I
G
G8N
OFWAL.iE OFWAL)ME
UBOAY)ME UBOAi.YE
a
enfo
r

= 0.2973

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 70

v) FOUNDATION PROPERTIES FOR DESIGN
Safe Bearing Capacity of Soil = 200 kN/m
3

vi) REFERENCE CODES
Refer pg. 17, Chapter 4, cl. 4.1.
vii) COMBINATION OF LOADS FOR LIMIT STATE DESIGN
a) Partial Safety Factor for verification of Structural Strength:
Refer pg. 38, Chapter 5, cl. 5.2 (a)
b) Partial Safety Factor for verification of Serviceability Limit State:
Refer pg. 38, Chapter 5, cl. 5.2 (b)



Fig. 8.1: Dimension Nomenclature of Retaining Wall

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 71

8.1. SECTION 1-1
8.1.1 DIMENSIONS OF SECTION 1-1
F.B.L of the Canal = 582.680 m
R.L. at Top of the Wall = 581.750 m
R.L. at Foundation Level = 575.790 m
Height of the Wall (H
1) = (581.750-575.790)
= 5.950 m
Allowable Surcharge height = 0.93 m
Thickness of Stem at top t
1 = 0.30 m
Thickness of Stem at bottom t
2 = 0.60 m (Min. 0.1xH)
Thickness of Base Slab at center D
1 = 0.60 m (Min. 0.1xH)
Thickness of Base Slab at ends D
2 = 0.30 m
Height of Stem h = Height of wall – Base slab thickness
= (5.950-0.60)
= 5.35 m
Width of Base Slab B = 5.10 m (0.4-0.7) x H
Width of Toe Slab a = 0.90 m
Width of Heel Slab b = B – t
2 - a
= (5.10-0.60-0.90)
= 3.60 m
Surcharge Width b
1 = Allowable Surcharge Height/ tan (β)
= 0.93/ tan (25.25)
= 1.976 m
Total Height including surcharge (H
2) = H 1 + [b1 x tan (β)]
= 6.89 m
As per Cl. 214.1/pg. 41/ IRC: 6-2014, Earth Pressure due to live load Surcharge (LLS)
Live Load Surcharge = 1.2 x k
a x ϒ
= 1.2 x 0.297 x 20
= 7.128 kN/m
2
Active Earth Pressure (Pa) = 0.5 x k a x ϒ x (H
r)
r

= 0.5 x 0.2973 x 20 x (6.89)
2

= 140.98 kN/m
2

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 72

As per Cl. 214.1, pg. 41, IRC: 6-2014, the Active Earth Pressure (AEP) is located at an
elevation of 0.42 of the height of the wall above the base.



Fig. 8.2: Section 1-1 Dimensions

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 73

STABILITY CHECK
Sl.
No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL M R M O
a) SELF WEIGHT
1 S 1 = 0.3x5.354x25 40.16 - 1.05 42.16 -
2 S 2 = 0.5x0.3x5.404x25 20.08 - 1.30 26.10 -
3 S 3 = 0.6x0.6x25 9.00 - 1.20 10.80 -
4 S 4 = 0.5x0.3x3.6x25 3.38 - 0.60 2.03 -
5 S 5 = 0.3x0.9x25 6.75 - 0.45 3.04 -
6 S 6 = 0.5x0.3x3.6x25 13.50 - 2.70 36.45 -
7 S 7 = 0.3x3.6x25 27.00 - 3.30 89.10 -
TOTAL 116.86
b) SOIL WEIGHTS
1 S 8 = 0.5x1.976x0.93x3.6x20 18.42 - 2.52 46.36 -
2 S 9 = 0.5x0.3x5.354x20 16.06 - 1.40 22.49 -
3 S 10 = 0.932x1.924x20x1.50 35.86 - 4.14 148.40 -
4 S 11 = 3.60x5.354x20 385.49 - 3.30 1272.11 -
5 S 12 = 0.50x0.30x3.60x20 10.80 - 3.90 42.12 -
TOTAL 466.63
c) EARTH PRESSURES DUE TO BACKFILL AND SURCHARGE
1 P a = 0.5x0.297x20x6.88
2
- - 2.50 0.00 0.00
2 P aH P a=PaH - 140.98 2.89 0.00 407.72
3 P aV 0.00 0.00 - 0.00 0.00
4 LLS = 1.20x7.128x6.88 - 49.08 3.44 0.00 168.99
TOTAL ΣV=585.44 ΣH=190.06
ΣM
R=
1741.15
ΣM O=
576.72

Total Vertical Load = 585.44 kN
Total Horizontal Load = 190.06 kN
Total Restoring Moment = 1741.15 kN-m
Total Overturning Moment = 576.72 kN-m

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 74

 = (ΣM
R - ΣMO) / ΣV
= (1741.15 – 576.72) / 585.44
= 1.990
As per Cl. 706.3.4, pg. 18-19, IRC 78-2014, stability checks are carried out
F.O.S against Sliding = μ x ΣV / ΣH
= 0.5 x 585.44 / 190.06
= 1.54 >1.50 SAFE
F.O.S against Overturning = ΣM
R / ΣMO
= 1741.15 / 576.72
= 3.02 >2.00 SAFE
Eccentricity = (B/2) - 
= (5.10/2) – 1.99
= 0.56 e<B/6 (0.85) SAFE
Base Pressure at Toe =
cm
B
S t( l
6Se
B
2
=
585.44
5.10
S t( l
6S0.56
5.10
2
= 191.38 kN/m
2
< 200 kN/m
2
SAFE
Base Pressure at Heel =
cm
B
S t( -
6Se
B
2
=
668.18
5.10
S t( l
6S0.56
5.10
2
= 38.62 kN/m
2
> 0 kN/m
2
SAFE

8.1.2. ULTIMATE LIMIT STATE DESIGN (U.L.S)- STRENGTH (BASIC
COMBINATION)
As per IRC: 6 -2014, Amendment, Table 3.2, pg. 44, the following Load Factors are
to be used for the Ultimate Limit State Design.
ϒ
self weight = 1.35
ϒ
SIDL = 1.35
ϒ
backfill weight = 1.50
ϒ
earth pressure = 1.50
ϒ
LLS = 1.20

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 75

Sl.
No
DESCRIPTION
FORCES (kN)
LEVER
ARM
(m)
MOMENTS
(kN-m)
VERTICAL HORIZONTAL M R M O
1 Self-Weight 161.81 0.00 283.06 0.00
2 Weight of Soil on heel 699.94 0.00 2297.22 0.00
3
Active Earth
Pressure
P
aH 0.00 211.47 2.89 0.00 611.58
PaV 0.00 0.00 0.00 0.00 0.00
4 LLS 0.00 58.90 3.44 0.00 202.79
TOTAL 861.75 270.37 2580.28 814.38

Total Vertical Load = 861.75 kN
Total Horizontal Load = 270.37 kN
Total Restoring Moment = 2580.28 kN-m
Total Overturning Moment = 814.38 kN-m
 = 2.05
F.O.S against Sliding = 1.59
F.O.S against Overturning = 3.17
Eccentricity = 0.50
Base Pressure at Toe = 268.52 kN/m
2

Base Pressure at Heel = 69.42 kN/m
2

A) DESIGN OF STEM
Grade of Concrete = M-25 (Strength Class)
Characteristic Strength of Concrete (f
ck) = 25.00 N/mm2
Grade of Steel = Fe-500 (Strength Class)
Characteristic Strength of Steel (f
y) = 500.00 N/mm2
Clear Cover = 75.00 mm
Diameter of Bar = 20 mm
Effective Depth (d) = 600-75-20/2
= 515 mm

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 76











Fig. 8.3: Section 1-1 -Forces acting on Stem- Basic Combination
 FORCES ACTING ON STEM:
 Force due to Active Earth Pressure (AEP) = 0.5 x k
a x ϒ x h
2
x ϒearth pressure
= 0.5 x 0.2 x 0.4924 x 5.4
2
x 1.50
= 191.48 kN/m
2

 Lever arm for AEP = 0.42 x h
= 0.42 x 5.40
= 2.27 m
 Force due to Live Load Surcharge (LLS) = LLS x h x ϒ
LLS
= 7.128 x 5.4 x 1.20
= 45.80 kN/m
2

 Lever arm for LLS = h /2
= 5.40 / 2
= 2.7 m
 BENDING MOMENT AND SHEAR FORCE
 Bending Moment (M
u) = (191.48 x 2.27) + (45.80 x 2.70)
= 553.17 kN-m
 Shear Force (V
u) = 195.07 + 46.22
= 237.27 kN
 CHECK FOR DEPTH
Breadth of Wall (b) = 1000 mm
Depth required (d)
required = 4
Mu
ynGugRShck × b
(For Fe-500)
5.35m
0.3m
0.6m
237.27
kN/m
2

AEP
45.80
kN/m
2

LLS

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 77

= 4
553.17×10
6
0.134 ×25 × 1000

= 406.36 mm < (d)
provided
Hence O.K.
 Ultimate Moment of Resistance (M
u)lim = 0.134 x fck x b x d
2

= 0.134 x 25 x 1000 x (515)
2

= 888.50 kN-m > M
u = 553.17 kN-m
Hence O.K.
 Tension Reinforcement for Stem (A
st):
A
st=
0.5×b×d×f
ck
fy
S =( -,1 −
4.6 ×M
u
fck×b×d
r
V
A
st=
0.5×1000×515×25
500
S Z( -41 −
gn6S241.29SGy
3
25×1000×515
H5 = 2768.01 mm
2

Considering 20 mm Ø bars,
c/c spacing =
GyyyS(Ast
)reqd
Area of 1 bar

=
GyyySr9 7 ynd G
Ø
@
Sry
H

= 110.20 mm
As per Cl. 16.6.1.1, max spacing must not exceed 2h (i.e. 600mm) or 250mm.
Hence, provide 20 mm Ø bars @ 85 mm c/c
A
st provided =
GyyyS
Ø
@
Sry
H
9 7
= 3695.99 mm
2

Percentage of steel (p
t) =
GyyS(Ast
)provided
b×d

=
GyyS3695.99
1000×515

= 0.72%
 DISTRIBUTION STEEL
As per cl.16.5.1.1, pg. 175, IRC: 112-2011, minimum reinforcement to be provided
should be 0.0013bd
∴ A
st min = 0.0013 x 1000 x 515 = 669.50 mm
2

Hence, provide 10 Ø bars @ 115 mm c/c as distribution steel for Stem.
 DEVELOPMENT LENGTH
As per Cl. 15.2.3.3, pg. 150, IRC: 112-2011, the Development Length (L
d) is given
by

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 78

L
d=
∅f
yd
4f
bd

Where,
Ø = nominal diameter of the bar,
f
yd = Design ultimate stress = fy/1.15
f
bd = design values for favorable bond conditions given in Table 15.3.
From Table 15.3, pg. 150, IRC: 112-2011, the Design bond stress for M25 Concrete is 2.25
for deformed bars. Hence the value of Bond Stress is
f
bd = 2.25 N/mm
2

L
d =
20×0.87×500
4×2.25

L
d = 966.67 mm

 CURTAILMENT OF STEM REINFORCEMENT
The curtailment of main tension reinforcement has to be done at a section where the Area of
tension reinforcement required is 50%.
Steel provided for stem = 3695.99 mm
2
i.e. 20mm Ø bars @ 85mm c/c
50% steel for stem = 1848.00 mm
2
i.e. 20mm Ø bars @ 170mm c/c
B.M for 50% steel = 384.286 kN-m

Now, we need to calculate the height at which the BM is 384.286 kN-m.
M=(Pa×0.42h)+<LLS×
h
2
U
M=G0.5×ka×ϒ×h
2
×0.42hq+<1.2×ka×ϒ×h×
h
2
U
384.286=G0.5×0.492×20×0.42×h
3
×1.5q+%1.2×0.297×20×
h
2
2
×1.2@
h = 4.565 m from top of stem and 0.789 from bottom of stem
But Actual Curtailment length = height of 50% A
st + Ld
= 0.789 + 0.967
= 1.756 m
Hence, curtail every alternate main reinforcement for stem at a height of 1.80 m from the
bottom.

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 79

 CHECK FOR SHEAR
As per Cl. 10.3.2, pg. 88, IRC: 112-2011, the design shear resistance (V
Rd.c) must be greater
or equal to the shear force acting at that section (V
Ed.)
V
Rd.c = [0.12K(80ρ1fck)
0.33
+ 0.15σcp] bwd
Subjected to a minimum of V
Rd.c = (νmin + 0.15σcp]bwd
K=1+√(200/d) ≤ 2.0 where d is depth in mm.
ν
min = 0.031K
3/2
fck
1/2
σ
cp is limited to 0.2 fcd (N/mm
2
) where σcp = NEd
/ Ac
ρ
1 = Asl/(bwd) ≤ 0.02

d = 515mm, A
st pro = 3695.99 mm
2

K = 1+4
200
515
= 1.623
ρ
1 = 3695.99/(1000x515) = 0.007177
σ
cp = 0 Since there is no axial force acting on the member
∴V
Rd.c = [0.12 x 1.23(80x0.007177x25)
0.33
] 1000 x 515
= 241.63 kN
V
Rd min = (0.031 x 1.623
3/2
x 25
1/2
) 1000 x 515
= 165.05 kN
Hence, V
Rd.c > VEd (237.27kN) HENCE O.K

Section
from
top
Breadth
(mm)
V
Ed. ρ1 σcp k V Rd.c (VRd.c)min CHECK
3.554 1000.00 39.34 0.00446 0 1.6950 173.49 141.71 SAFE
5.350 1000.00 237.27 0.00717 0 1.6232 241.62 165.08 SAFE

HENCE O.K

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 80

B) DESIGN OF FOOTING












Fig. 8.4: Section 1-1 -Upward bearing pressure for footing- Basic Combination

 SECTION 1: FOR HEEL SLAB
BENDING MOMENT AND SHEAR FORCE CALCULATION
Sl.No Description Force
Lever
Arm
Moment
1
Self-Weight of Heel Slab
= 0.5x0.25x3.6x25x1.35 36.45 1.80 65.61 S6
= 0.5x3.60x0.25x1.35 18.23 1.20 21.87 S7
2
Weight of Soil Above Heel Slab
= 0.5x0.7905x1.676x20x1.50 19.87 1.12 22.21
S8
= 1.676x0.1415x20x1.50 7.11 0.84 5.96
= 0.932x1.9239x20x1.50 53.79 2.638 141.91 S10
= 3.60x5.404x20x1.50 578.23 1.80 1040.82 S11
= 0.50x0.25x3.60x20x1.50 16.20 2.40 38.88 S12
3 P v 0.00 3.60 0.00
4 Base Pressure on Heel
-249.90 1.80 -449.82

-252.98 1.20 -303.58
TOTAL 227.00 583.85
0.515 m
0.9 m 0.6 m 3.6 m
0.55 m
268.52
N/mm
2

69.542
N/mm
2
209.96
N/mm
2

233.39
N/mm
2

253.49
N/mm
2

S/N 1 S/N 2 S/N 3
0.3 m
5.1 m

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 81

 SECTION 2: FOR TOE SLAB
Sl.No Description Force
Lever
Arm
Moment
1
Self-Weight of Toe Slab
= 0.5x0.25x0.90x25x1.35 4.56 0.30 1.37 S4
= 0.30x0.90x25x1.35 9.11 0.45 4.10 S5
2 Base Pressure on Toe
-210.05 0.45 -94.52

-15.81 0.60 -9.49
TOTAL -212.19 -98.56

 SECTION 3: FOR TOE SLAB AT CRITICAL SECTION
Sl.No Description Force
Lever
Arm
Moment
1
Self-Weight of Toe Slab
=0.50x0.431x0.121x25x1.35 0.83 0.127 0.10 S4
=0.30x0.431x25x1.35 4.36 0.19 0.73 S5
2 Base Pressure on Toe
-108.20 0.19 -18.40

-3.65 0.25 -0.73
TOTAL -94.76 -18.29

 SECTION FORCES
Section Breadth (b)
Overall
Depth (D)
Effective
Depth (d)
B.M
(kN-m)
S.F
(kN)
1 1000 600.00 515.00 583.72 227.10
2 1000 600.00 519.00 -98.56 -212.19
3 1000 428.33 347.33 -18.29 -9

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 82

 TENSION REINFORCEMENT
Section
drequired
(mm)
dprovided
(mm)
M
u

(kN-m)
M
u lim

(kN-m)
Ast min
(mm
2
)
A
st req

(mm
2
)
c/c spacing
A
st pro

(mm
2
) Required Provided
1 417.47 515.00 583.72 888.50 720.00 2944.10 106.71 90.00 3490.66
2 171.52 519.00 98.56 902.36 720.00 444.30 157.08 135.00 837.76
3 73.88 347.33 18.29 404.15 514.00 121.95 220.03 135.00 837.76

Hence provide,
 20 Ø bars at 90 mm c/c for Section -1
 12 Ø bars at 135 mm c/c for Section -2
 12 Ø bars at 135 mm c/c for Section -3
 10 Ø bars at 115 mm c/c as Distribution steel
 CHECK FOR SHEAR
Section
Breadth
(mm)
V
ED. ρ1 σcp k V Rd.c (V Rd.c)min
CHECK
1 1000.00 227.00 0.006778 0.00 1.6232 237.11405 165.08 SAFE
3 1000.00 94.76 0.002412 0.00 1.7588 26.210005 125.58 SAFE

8.1.3. LIMIT STATE OF SERVICEABILITY (RARE COMBINATION)
As per IRC: 6 -2014, Amendment, Table 3.3, pg. 44, the following Load Factors are to be
used for the Ultimate Limit State of Serviceability- Rare Combination.
ϒ
self weight = ϒSIDL = ϒbackfill weight = ϒearth pressure = 1.00 and ϒLLS = 0.80
Sl. No DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 119.86 0.00 209.68 0.00
2 Weight of Soil on heel 466.63 0.00 1531.48 0.00
3
Active Earth
Pressure
P
aH 0.00 140.98 2.89 0.00 407.72
PaV 0.00 0.00 5.10 0.00 0.00
4 LLS 0.00 39.27 3.44 0.00 135.20
TOTAL 585.44 180.24 1741.15 542.92

Total Vertical Load = 585.44 kN

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 83

0.3m
Total Horizontal Load = 180.24 kN
Total Restoring Moment = 1741.15 kN-m
Total Overturning Moment = 542.92 kN-m
 = 2.04
F.O.S against Sliding = 1.63
F.O.S against Overturning = 3.21
Eccentricity = 0.51
Base Pressure at Toe = 183.58 kN/m
2

Base Pressure at Heel = 46.41 kN/m
2

A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.5: Section 1-1 -Forces acting on Stem- Rare Combination
 DESIGN FORCES
Section
from
top
Wall
thickness

Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-m)
S.F
(kN)
3.554 499.29 1000 20.54 1.80 63.75 1.51 133.30 84.289
5.350 600 1000 30.53 2.68 127.65 2.25 368.78 158.18

 CHECK FOR STRESS IN STEM
As per Cl. 12.2.1, pg. 120, IRC: 112-2011, the maximum compressive stress in concrete
under rare combinations of loads shall be limited to 0.48f
ck = 0.48 x 25
= 12.0 N/mm
2

127.65
kN/m
2

AEP
0.6m
30.53
kN/m
2

LLS
5.35m

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 84

As per Cl. 12.2.2, pg. 120, IRC: 112-2011, the maximum tensile stress in steel under
rare combinations of loads shall be limited to 0.80f
y = 0.8 x 500
= 400.00 N/mm
2


Section
from
top
Effective
depth (d)
Bending
Moment
(M)
Area of
Steel A
st
pro

Neutral
Axis
(x u)
Moment
of Inertia
(I cr)
Stress in
Steel
σ
sc
(N/mm
2
)
Stress in
Concrete

σc
(N/mm
2
)
3.554 414.29 133.30 1848.00 144.62 3.86E+09 195.65 4.99
5.350 515.00 368.78 3695.99 214.65 1.02E+10 225.22 7.74
HENCE O.K
 To calculate Neutral axis:
We have,
Modulus of Elasticity of Steel (E
s) = 200000 N/mm
2

Modulus of Elasticity of Concrete (E
c) = 25000 N/mm
2

As per Cl. 6.4.2.5, pg. 43, IRC: 112-2011
Creep Co-efficient (Փ) for 28 days = 1.60
Modular ratio (m) = E
s / Ec eff
=
2×10
5
25000
1+1.60

= 20.80
Hence,
b×x
u×(x
u/2)=m×A
st×(d-x
u)
1000×x
u×(x
u/2)=20.8×2855.99×(515-x
u)
Solving for x
u we get,
x
u=194.99 mm
 To calculate cracked Moment of Inertia
I
cr=Z
b×x
u
3
12
+(A×h
2
)5+[m×A
st×(d-x
u)
2
]
I
cr=Z
1000×194.99
3
12
+(1000×194.99×(194.99/2)
2
)5+ [20.8×2855.99×(515-194.99)
2
]
∴I
cr = 8.550x10
9

mm
4

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 85

 Stress in Steel (σ
sc)
σ
sc =
368.78×10
6
8.55×10
9
× (515-194.99) x20.80 = 286.94 N/mm
2

< (Limiting σsc= 400N/mm
2
)
HENCE O.K
 Stress in Concrete
σ
c =
378.43×10
6
8.55×10
9
×(194.99) = 8.41 N/mm
2

< (Limiting σc= 12 N/mm
2
)
HENCE O.K
B) DESIGN OF FOOTING












Fig. 8.6: Section 1-1 -Upward bearing pressure for footing- Rare Combination













0.3 m
143.24
N/mm
2

46.41
N/mm
2

5.1 m
3.6 m 0.6 m 0.9 m
0.60 m
S/N 1
0.515 m
183.58
N/mm
2

159.37
N/mm
2

173.33
N/mm
2

S/N 2 S/N 3

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 86

 BENDING MOMENTS AND SHEAR FORCES
Section 1
Sl. No Description Force Lever Arm Moment
1 Self-Weight of Heel Slab
27.00 1.80 48.60 S6
13.50 1.20 16.20 S7
2 Weight of Soil Above Heel Slab
13.25 1.12 14.81
S8
4.74 0.84 3.97
35.86 2.64 94.60 S10
385.49 1.80 693.88 S11
10.80 2.40 25.92 S12
3 P v 0.00 3.60 0.00
4 Base Pressure on Heel
-167.09 1.80 -300.77

-174.28 1.20 -209.14
TOTAL 149.27 388.08

Section 2
Sl. No. Force Lever Arm Moment
1 Self-Weight of Toe Slab
3.38 0.30 1.01 S4
6.75 0.45 3.04 S5
2 Base Pressure on Toe
-143.44 0.45 -64.55

-10.89 0.60 -6.54
TOTAL -144.20 -67.03

Section 3
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
0.611 0.13 0.08 S4
2.86 0.19 0.54 S5
2 Base Pressure on Toe
-66.04 0.19 -12.58

-1.95 0.25 -0.50
TOTAL -64.52 -12.45

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 87

 SECTION FORCES
Section
Overall
Depth (D)
Breadth
(b)
Effective
Depth (d)
B.M
(kN-m)
S.F
(kN)
1 600.00 1000 515.00 388.02 149.27
2 600.00 1000 519.00 -67.03 -144.20
3 420.83 1000 347.33 -12.45 -64.52

 CHECK FOR STRESS
Section
Overall
Depth
(h)
Effective
Depth
(d)
Bending
Moment
(M)
Area of
Steel
A
s provided
Neutral
Axis
(x u)
Moment
of
Inertia
(I
cr)
Stress in
Steel σ
sc
(N/mm
2
)

Stress in
Concrete
σ
c
(N/mm
2
)
1 600 515 388.02 3490.66 210.34 9.84E+09 249.90 8.29
2 600 519 67.03 837.76 118.19 3.35E+09 166.83 2.37
3 420.83 347.33 12.45 837.76 93.97 1.40E+09 47.04 0.84

8.1.4. LIMIT STATE OF SERVICEABILITY (QUASI PERMANENT
COMBINATION)
As per IRC: 6 -2014, Amendment, Table 3.3, pg. 44, the following Load Factors are to be
used for the Ultimate Limit State of Serviceability- Quasi Permanent Combination.
ϒ
self weight = ϒSIDL = ϒbackfill weight = ϒearth pressure = 1.00 and ϒLLS = 0

Sl. No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL M R M O
1 Self-Weight 119.86 209.68
2 Weight of Soil on heel 466.63 1531.48
3
Active Earth
Pressure
P
aH 0.00 140.98 2.89 0.00 407.72
PaV 0.00 0.00 5.10 0.00 0.00
4 LLS 0.00 0.00 3.44 0.00 0.00
TOTAL 586.49 140.98 1741.15 407.72

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 88

0.3m
Total Vertical Load = 586.49 kN
Total Horizontal Load = 140.98 kN
Total Restoring Moment = 1741.15 kN-m
Total Overturning Moment = 407.72 kN-m
 = 2.27
F.O.S against Sliding = 2.08
F.O.S against Overturning = 4.27
Eccentricity = 0.28
Base Pressure at Toe = 152.39 kN/m
2

Base Pressure at Heel = 77.60 kN/m
2


A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.7: Section 1-1 -Forces acting on Stem- Quasi Permanent
 DESIGN FORCES
Section
from top

Wall
thickness
LLS
Lever
Arm (m)
Active
Earth
Pressure
Lever
Arm (m)
B.M
(kN-m)
S.F
(kN)
3.554 414.29 0 1.80 63.75 1.51 96.341 63.75
5.350 600 0 2.680 127.65 2.25 287.05 127.65





127.65
kN/m
2

AEP
0.6m
5.35 m

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 89

 CRACK WIDTH FOR STEM
Section
from
top
x
u
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
hc eff A c eff ρ p eff ϵ s-ϵm S r max W k
3.554 144.62 141.405 3.61 119.13 119127.92 0.01551 0.000424 474.18 0.201
5.15 214.65 175.27 6.02 128.45 128449.54 0.02877 0.0005226 373.163 0.196

Crack width is calculated as per Cl. 12.3.4, pg. 125, IRC: 112-2011.
W
k=S
r.max(ε
sm-ε
cm)
Where,
h
c eff
is least of Q
2.5(h-d)
(h-x)/3
h/2
=Q
2.5(600-515)
(600-194.99)/3
600/2
=Q
212.50 mm
135.00 mm
300.00 mm

Hence, h
c eff = 135 mm
A
c eff = b x hc eff = 1000 x 135 = 135000 mm
2

ρ
p-eff = As/ Ac eff = (2855.99/135000) = 0.021150
S
r. max = 3.4c+
0.425k1k2ϕ
ρ
p-eff

= 3.4×75+
0.425×0.8×0.5
0.02115
= 415.72 mm
f
ct.eff = 0.7√0.446f ck or 2.90 max Cl. 12.2.3, IRC: 112-2011
= 0.7√11.15 or 2.90
= 3.50 > 2.90
= 2.90

sm-ε
cm) =
σ
sc -k
t
f
ct.eff
ρ
p-eff
t1+α

p-eff
2
E
s
≥0.6
σ
sc
E
s

=
WWε811nb8β bon
s8ϕ
686s≥ ≥ 96
(G8ryn9SynyrGG7 y)
ryyyyy
≥ 0.6
WWε811
ryyyyy

= 0.000654809 ≤ 0.000688991

sm-ε
cm) = 0.000688991
As per Cl. 12.3.2, Table 12.1, Pg. 112, IRC: 112-2011, the limiting crack width for moderate
exposure condition and reinforced member is 0.30 mm
∴ W
k = 415.72 x 0.000688991
= 0.28643 mm < 0.3mm
HENCE O.K.

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 90

B) DESIGN OF FOOTING












Fig. 8.8: Section 1-1 -Upward bearing pressure for footing- Rare Combination
Section 1
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Heel Slab
27.00 1.80 48.60 S6
13.50 1.20 16.20 S7
2 Weight of Soil Above Heel Slab
13.25 1.12 14.81
S8
4.74 0.84 3.97
35.86 2.638 94.60 S10
385.49 1.80 693.88 S11
10.80 2.40 25.92 S12
3 P v 0.00 3.60 0.00

4 Base Pressure on Heel
-279.37 1.80 -502.86

-95.03 1.20 -114.03
TOTAL

116.25

281.09


Section 2
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
3.38 0.30 1.01 S4
6.75 0.45 3.04 S5
2 Base Pressure on Toe
-125.27 0.45 -56.37
-5.94 0.60 -3.56
TOTAL -121.09 -55.89
0.60 m 0.515 m
77.60
N/mm
2
130.40
N/mm
2

139.19
N/mm
2


146.81
N/mm
2

5.1 m
0.3 m
3.6 m 0.6 m
0.9 m
S/N 3 S/N 2 S/N 1
152.39
N/mm
2

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 91

Section 3
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Toe Slab
0.611 0.13 0.08 S4
2.86 0.19 0.54 S5
2 Base Pressure on Toe
-55.93 0.19 -10.66

-1.06 0.25 -0.27
TOTAL

-53.53

-10.30


 SECTION FORCES
Section
Overall Depth
(D)
Breadth
(b)
Effective
Depth (d)
B.M
(kN-m)
S.F
(kN)
1 600 1000 515 281.09 116.25
2 600 1000 519 -55.89 -121.09
3 428.33 1000 179.67 -10.30 -53.53

 CRACK WIDTH FOR FOOTING
Section x
u
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
hc eff A c eff ρ p eff ϵ s-ϵm S r max W k
1 210.34 181.00 6.01 129.89 129888.32 0.02687 0.0005430 381.51 0.2072
2 118.19 139.10 1.97 160.60 160603.77 0.00522 0.0004173 646.08 0.2696
3 93.97 13.16 0.69 111.46 111455.14 0.00752 0.0000395 526.40 0.0208
HENCE O.K.

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 92

8.2. SECTION 2-2
8.2.1. DIMENSIONS OF SECTION 2-2
F.B.L of the Canal = 582.680 m
R.L. at Top of the Wall = 580.771 m
R.L. at Foundation Level = 575.794 m
Height of the Wall (H1) = 4.98 m
Allowable Surcharge height = 1.91 m
Surcharge Width = 4.05 m
Thickness of Stem t
1 = 0.30 m
t
2 = 0.60 m
Thickness of Base Slab D
1 = 0.60 m
D
2 = 0.30 m
Height of Stem h = 4.38 m
Width of Base Slab B = 4.90 m
Width of Toe Slab a = 0.50 m
Width of Heel Slab b = 3.80 m
Surcharge Width b
1 = 4.10 m
Total Height including surcharge H
2 = 6.91 m
Co-efficient of Earth Pressure k
a = 0.4924
Coefficient of Friction μ = 0.50
Density of concrete = 25.00 kN/m
3

Density of Compacted Backfill ϒ = 20.00 kN/m
3

Live Load Surcharge = 0.000 kN/m
2


As per Cl. 214.2, pg. 41, IRC 6-2014, the section 2-2 is at a distance greater than 3m from
the box culvert. Hence, the effect of LLS will not act upon the section and is ignored.

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 93



Fig. 8.9: Section 2-2 Dimensions

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 94

Sl.
No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
a) SELF WEIGHT
1 S1 = 0.3 x 4.377 x 25 32.83 - 0.75 24.62 -
2 S2 = 0.5 x 0.3 x 4.377 x 25 16.41 - 1.00 16.41 -
3 S3 = 0.6 x 0.6 x 25 9.00 - 0.90 8.10 -
4 S4 = 0.5 x 0.3 x 3.8 x 25 2.25 - 0.40 0.90 -
5 S5 = 0.3 x 0.6 x 25 4.50 - 0.30 1.35 -
6 S6 = 0.5 x 0.3 x 3.8 x 25 14.25 - 2.47 35.15 -
7 S7 = 0.3 x 3.8 x 25 28.50 - 3.10 88.35 -
TOTAL 107.74

b) SOIL WEIGHTS
1 S8 = 0.5 x 4.1 x 1.934 x 3.8 x20 79.28 - 3.63 288.05 -
2 S9 = 0.5 x 0.3 x 4.377 x 20 13.13 - 1.10 14.44 -
3 S10 - 0.00 - 5.00 0.00 -
4 S11 = 3.8 x 4.38 x 20 332.65 - 3.10 1031.22 -
5 S12 = 0.5 x 0.3 x3.8 x20 11.40 - 3.73 42.56 -
TOTAL 436.46

c) EARTH PRESSURES DUE TO BACKFILL AND SURCHARGE
1 Pa 235.14 - - 2.09 0.00 0.00
2 PaH - 212.67 2.90 0.00 617.28
3 PaV 100.30 - 5.00 501.52
4 LLS - 0.00 3.46 0.00 0.00
TOTAL 644.51 212.67 2052.68 617.28
Total Vertical Load = 644.51 kN
Total Horizontal Load = 212.67 kN
Total Restoring Moment = 2052.68 kN-m
Total Overturning Moment = 617.28 kN-m
 = 2.23

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 95

F.O.S against Sliding = 1.515 >1.50 SAFE
F.O.S against Overturning = 3.33 >2.00 SAFE
Eccentricity = 0.27 e<b/6 SAFE
Base Pressure at Toe = 171.11 kN/m
2
SAFE
Base Pressure at Heel = 86.69 kN/m
2
SAFE

8.2.2. ULTIMATE LIMIT STATE DESIGN (U.L.S)- STRENGTH (BASIC
COMBINATION)
ULTIMATE LIMIT STATE DESIGN (BASIC COMBINATION)

Sl.
No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 145.45 0.00 236.09 0.00
2 Weight of Soil on heel 654.70 0.00 2064.42 0.00
3
Active Earth
Pressure
P
aH 0.00 319.01 2.90 0.00 925.92
PaV 150.45 0.00 5.00 752.27 0.00
4 LLS 0.00 0.00 3.46 0.00 0.00
TOTAL 950.60 319.01 3052.79 925.92

Total Vertical Load = 950.60 kN
Total Horizontal Load = 319.01 kN
Total Restoring Moment = 3052.79 kN-m
Total Overturning Moment = 925.92 kN-m
 = 2.24
F.O.S against Sliding = 1.49
F.O.S against Overturning = 3.30
Eccentricity = 0.26
Base Pressure at Toe = 250.03 kN/m
2

Base Pressure at Heel = 130.21 kN/m
2

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 96

A) DESIGN OF STEM










Fig. 8.10: Section 2-2 -Forces acting on Stem- Basic Combination
Design of Forces
Section
from top
Wall
thickness
Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-m)
S.F
(kN)
2.78 490.41 1000 0.00 1.39 57.08 1.17 66.64 57.08
4.38 600.00 1000 0.00 2.19 127.97 1.84 235.26 127.97

 REINFORCEMENT CALCULATIONS
Reinforcement Calculations
Sl.
No.
Section
from top
Depth
(D)
d required
(mm)
dprovided
(mm)
M
u

(kN-m)
M
ulim

(kN-m)
A
st reqd

(mm
2
)
c/c
spacing
provided
A
st pro

(mm
2
)
1 2.78 490.41 141.04 407.41 66.64 556.04 588.50 240 837.76
2 4.38 600.00 265.00 517.00 235.26 895.42 1092.79 120 1675.52
Hence, Provide 16Ø Bars @ 120 mm c/c as main reinforcement and provide Ast min = 672.10
mm
2
i.e. 10 Ø @ 115mm c/c as distribution steel.
Hence, curtail alternate bars at a distance of 1.60m from bottom of the stem.





0.6m
0.3m
4.38 m
127.97
kN/m
2

AEP

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 97

 Check for Shear
Section
from
top
Breadth
(mm)
V
ED. ρ1 σcp k V Rd.c (V Rd.c)min
CHECK
2.78 1000 57.08 0.00206 0 1.7006 132.66 140.04 SAFE
4.38 1000 127.97 0.00211 0 1.6220 161.84 165.54 SAFE

B) DESIGN OF FOOTING











Fig. 8.11: Section 2-2 - Upward bearing pressure for footing- Basic Combination
 SECTION 1: AT HEEL
Section 1
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Heel Slab
38.48 1.90 73.10 S6
19.24 1.27 24.37 S7
2 Weight of Soil Above Heel Slab
102.16 2.53 258.79
S8
16.13 1.90 30.65
0.00 0.000 0.00 S10
498.98 1.90 948.06 S11
17.10 2.53 43.32 S12
3 P v 150.45 3.80 571.73
4 Base Pressure on Heel
-494.79 1.90 -940.10
-173.03 1.27 -219.17
TOTAL 174.71 790.75

S/N 2
0.3 m
5.0 m
0.5125
0.6 m 0.6 m 3.8 m
0.60
250.03
N/mm
130.21
N/mm
2

221.28
N/mm
2

235.65
N/mm
2

247.94
N/mm
2

S/N 1 S/N 3

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 98

 SECTION 2: AT TOE
Section 2
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
3.04 0.20 0.61 S4
6.08 0.30 1.82 S5
2 Base Pressure on Toe
-141.39 0.30 -42.42

-4.31 0.40 -1.73
TOTAL -136.59 -41.71

 SECTION 3: AT TOE CRITICAL SECTION
Section 3
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
0.06 0.027 0.00 S4
0.82 0.04 0.03 S5
2 Base Pressure on Toe
-20.08 0.04 -0.81
-0.08 0.05 0.00
TOTAL -19.29 -0.78

 SECTION FORCES
Section
Overall
Depth (D)
Effective
Depth (d)
Breadth
b
(mm)
B.M
(kN-m)
S.F
(kN)
1 600.00 512.50 1000 790.75 174.71
2 600.00 519.00 1000 -41.71 -136.59
3 343.75 262.75 1000 -0.78 -19.29

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 99

 REINFORCEMENT CALCULATIONS
Reinforcement Calculations
Section
Depth
(D)
d
required
(mm)
d
provided
(mm)
M
u

(kN-
m)
M
u lim

(kN-
m)
A
st min

(mm
2
)
A
st reqd

(mm
2
)
c/c
spacing
provided
A
st pro

(mm
2
)
1 600.00 490.90 512.50 807.31 879.90 720.00 4367.40 90.00 5454.15
2 600.00 96.30 519.00 31.07 902.36 720.00 138.42 170.00 665.28
3 292.50 3.72 211.50 0.05 149.85 351.00 0.50 290.00 389.99
Hence, Provide
 25mm Ø bars at 90mm c/c at section 1
 12mm Ø bars at 150mm c/c at section 2
 12mm Ø bars at 150mm c/c at section 3
 10 Ø @ 115mm c/c as distribution steel
 CHECK FOR SHEAR
Section
Breadth
(mm)
V
ED. ρ1 σcp k V Rd.c (V Rd.c)min CHECK
1 1000.00 174.71 0.0106423 0.00 1.6247 274.0993 164.51 SAFE
3 1000.00 19.29 0.0028696 0.00 1.8725 105.0886 104.35 SAFE

8.2.3. LIMIT STATE OF SERVICEABILITY (RARE COMBINATION)
ULTIMATE LIMIT STATE DESIGN (RARE COMBINATION)
Sl.
No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 107.74 0.00 174.88 0.00
2 Weight of Soil on heel 436.46 0.00 1376.28 0.00
3
Active Earth
Pressure
P
aH 0.00 212.67 2.90 0.00 617.28
PaV 100.30 0.00 5.00 501.52 0.00
4 LLS 0.00 0.00 3.46 0.00 0.00
TOTAL 644.51 212.67 2052.68 617.28
Total Vertical Load = 644.51 kN
Total Horizontal Load = 212.67 kN
Total Restoring Moment = 2052.68 kN-m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 100

0.3m
Total Overturning Moment = 617.28 kN-m
 = 2.23
F.O.S against Sliding = 1.52
F.O.S against Overturning = 3.33
Eccentricity = 0.27
Base Pressure at Toe = 171.11 kN/m
2

Base Pressure at Heel = 86.69 kN/m
2

A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.13: Section 2-2 -Forces acting on Stem- Rare Combination
 DESIGN FORCES
Sl.
No.
Section
from
top
Wall
thickness
LLS
Breadth

b
(mm)
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-
m)
S.F
(kN)
1 2.78 490.41 0.00 1000 1.39 37.96 1.17 44.27 37.96
2 4.38 600.00 0.00 1000 2.19 85.31 1.84 156.84 85.31







85.310
kN/m
2

AEP
0.6m
4.38 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 101

 CHECK FOR STRESS
Section
Breadth
(mm)
Depth
(h)
Effective
depth
(d)
Bending
Moment
(M)
A
s provided N.A I cr
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
2.78 1000.00 490.41 407.41 44.27 837.76 103.21 1.99E+09 141.08 2.29
4.38 1000.00 600.00 517.00 156.84 1675.52 158.15 5.81E+09 201.61 4.27

B) DESIGN OF FOOTING












Fig. 8.14: Section 2-2 - Upward bearing pressure for footing- Rare Combination













S/N 2
0.3 m
150.85
N/mm
2

86.69
N/mm
2

5.0 m
3.8 m 0.6 m 0.6 m
0.60 m
S/N 1
0.5125 m
171.11
N/mm
2

160.98
N/mm
2

169.74
N/mm
2

S/N 3

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 102

 SECTION 1: AT HEEL SECTION
Section 1
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Heel Slab
28.50 1.90 54.15 S6
14.25 1.27 18.05 S7
2 Weight of Soil Above Heel Slab
68.10 2.53 172.53
S8
10.75 1.90 20.43
0.00 0.00 0.00 S10
332.65 1.90 632.04 S11
11.40 2.53 28.88 S12
3 P v 100.30 3.80 381.15
3 Base Pressure on Heel
-329.43 1.90 -625.92
-121.90 1.27 -154.41
TOTAL 114.63 526.90

 SECTION 2: AT TOE SECTION
Section 2
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
2.25 0.20 0.45 S4
4.50 0.30 1.35 S5
2 Base Pressure on Toe
-96.59 0.30 -28.98

-3.04 0.40 -1.22
TOTAL -92.88 -28.39

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 103

 SECTION 3: AT TOE CRITICAL SECTION
Section 3
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
0.044 0.03 0.00 S4
0.61 0.04 0.02 S5
2 Base Pressure on Toe
-13.75 0.04 -0.56

-0.06 0.05 0.00
TOTAL -13.15 -0.53

 SECTION FORCES
Section Forces
Section
Overall
Depth (D)
Breadth
b
(mm)
Effective Depth
(d)
B.M
(kN-m)
S.F
(kN)
1 600.00 1000 512.50 526.90 114.63
2 600.00 1000 519.00 -28.39 -92.88
3 343.75 1000 262.75 -0.53 -13.15

 CHECK FOR STRESS
Section
Overall
Depth
(h)
Effective
Depth
(d)
Bending
Moment
(M)
A
s N.A I cr
σ
sc
(N/mm
2
)
σ
c
(N/mm
2
)
1 600.00 512.50 538.18 5454.15 245.93 1.30E+10 229.19 10.17
2 600.00 519.00 21.14 753.98 112.87 3.07E+09 58.25 0.78
3 292.50 211.50 0.03 753.98 67.26 4.28E+08 0.22 0.00

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 104

0.3m
8.2.4. LIMIT STATE OF SERVICEABILITY (QUASI PERMANENT
COMBINATION)
ULTIMATE LIMIT STATE DESIGN (QUASI PERMANENT COMBINATION)
Sl.
No
DESCRIPTION
FORCES (kN) LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 107.74 174.88
2 Weight of Soil on heel 436.46 1376.28
3
Active Earth
Pressure
P
aH 0.00 212.67 2.90 0.00 617.28
PaV 100.30 0.00 5.00 501.52 0.00
4 LLS 0.00 0.00 3.46 0.00 0.00
TOTAL 644.51 212.67 2052.68 617.28
Total Vertical Load = 644.51 kN
Total Horizontal Load = 212.67 kN
Total Restoring Moment = 2052.68 kN-m
Total Overturning Moment = 617.28 kN-m
F.O.S against Sliding = 1.52
F.O.S against Overturning = 3.33
Eccentricity = 0.27
Base Pressure at Toe = 171.11 kN/m
2

Base Pressure at Heel = 86.69 kN/m
2
A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.15: Section 2-2 -Forces acting on Stem- Quasi Permanent
85.31
kN/m
2

AEP
0.6m
4.38 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 105

 DESIGN FORCES
Sl.
No.
Section
from
top
Wall
thickness
Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-
m)
S.F
(kN)
1 2.78 490.41 1000 0.00 1.39 37.960 1.17 44.27 37.96
2 4.38 600.00 1000 0.00 2.19 85.31 1.84 156.84 85.31

 CHECK FOR CRACK WIDTH
Check for Crack Width
Section
from
top
x
u
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
hc eff A c eff ρ p eff ϵ s-ϵm S r max W k
2.78 103.21 141.078 2.289 129.60 129597.58 0.00646 0.000423 675.772 0.286
5.15 160.93 193.60 4.21 146.36 146357.34 0.01195 0.0005808 482.69 0.28035

B) DESIGN OF FOOTING












Fig. 8.16: Section 2-2 - Upward bearing pressure for footing- Quasi Permanent





0.3 m
5.0 m
86.69
N/mm
2

150.85
N/mm
2

160.98
N/mm
2


169.74
N/mm
2

171.11
N/mm
2

3.8 m
0.60 m
S/N 1 S/N 3 S/N 2
0.512m
0.6 m 0.6 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 106

 SECTION 1: AT HEEL
Section 1 (D=0.8m)
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Heel Slab
28.50 1.90 54.15 S6
14.25 1.27 18.05 S7
2 Weight of Soil Above Heel Slab
68.10 2.53 172.53
S8
10.75 1.90 20.43
0.00 0.000 0.00 S10
332.65 1.90 632.04 S11
11.40 2.53 28.88 S12
3 P v 100.30 3.80 381.15
4 Base Pressure on Heel
-329.43 1.90 -625.92

-121.90 1.27 -154.41
TOTAL 114.63 526.90

 SECTION 2: AT TOE
Section 2
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
2.25 0.20 0.45 S4
4.50 0.30 1.35 S5
2 Base Pressure on Toe
-96.59 0.30 -28.98
-3.04 0.40 -1.22
TOTAL -92.88 -28.39

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 107

 SECTION 3: AT TOE CRITICAL SECTION
Section 3
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
0.044 0.03 0.00 S4
0.61 0.04 0.02 S5
2 Base Pressure on Toe
-13.75 0.04 -0.56
-0.06 0.05 0.00
TOTAL -13.15 -0.53

 SECTION FORCES
Section
Overall
Depth (D)
Effective
Depth
(d)
Breadth
b
(mm)
B.M
(kN-m)
S.F
(kN)
1 600.00 512.50 1000 526.90 114.63
2 600.00 519.00 1000 -28.39 -92.88
3 343.75 137.38 1000 -0.53 -13.15

 CHECK FOR CRACK WIDTH
Section
σ
sc
(N/mm
2
)
σ
c

(N/mm
2
)
h
c eff A c eff ρ p eff ϵ s-ϵm S r max W k
1 224.39 9.95 118.02 118022.75 0.04621 0.0008143 346.97 0.2825
2 78.23 1.05 162.38 162378.09 0.00464 0.0002347 694.34 0.1629
3 0.98 0.06 89.10 89102.13 0.00846 0.0000029 496.08 0.0015

Hence O.K.

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 108

8.3. SECTION 3-3
8.3.1. DIMENSIONS OF SECTION 3-3
F.B.L of the Canal = 582.680 m
R.L. at Top of the Wall = 579.794 m
R.L. at Foundation Level = 575.790 m
Height of the Wall (H
1) = 4.00 m
Allowable Surcharge height = 2.89 m
Thickness of Stem at top t
1 = 0.30 m
Thickness of Stem at bottom t
2 = 0.60 m (Min. 0.1xH)
Thickness of Base Slab at center D
1 = 0.55 m (Min. 0.1xH)
Thickness of Base Slab at ends D
2 = 0.30 m
Height of Stem h = 3.450 m
Width of Base Slab B = 3.900 m (0.4-0.7) x H
Width of Toe Slab a = 0.500 m
Width of Heel Slab b = 2.800 m
Surcharge Width b
1 = 3.100 m
Total Height including surcharge (H
2) = 5.46 m

Active Earth Pressure (Pa) = 0.5 x k
a x ϒ x (H
.)
.

= 0.5 x 0.4924 x 20 x (5.46)
2

= 146.89 kN/m
2

As per Cl. 214.1, pg. 41, IRC: 6-2014, the Active Earth Pressure (AEP) is located at an
elevation of 0.42 of the height of the wall above the base.
As per Cl. 214.2, pg. 41, IRC 6-2014, the section 2-2 is at a distance greater than 3m from
the box culvert. Hence, the effect of LLS will not act upon the section and is ignored.

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 109



Fig. 8.9: Section 3-3 Dimensions

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 110

STABILITY CHECK
Sl.
No
DESCRIPTION
FORCES (kN)
LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
a) SELF WEIGHT
1 S1 = 0.3 x 3.45 x 25 25.88 - 0.65 16.82 -
2 S2 = 0.5 x 0.3 x 3.45 x 25 12.94 - 0.90 11.64 -
3 S3 = 0.6 x 0.55 x 25 8.25 - 0.80 6.60 -
4 S4 = 0.5 x 0.25 x 2.8 x 25 1.56 - 0.33 0.52 -
5 S5 = 0.3 x 0.5 x 25 3.75 - 0.25 0.94 -
6 S6 = 0.5 x 0.25 x 2.8 x 25 8.75 - 2.03 17.79 -
7 S7 = 0.3 x 2.8 x 25 21.00 - 2.50 52.50 -
TOTAL 82.13


b) SOIL WEIGHTS
1 S8 = 0.5x3.1x1.462x2.8x20 45.32 - 2.87 129.93 -
2 S9 = 0.5x0.3x3.45x20 10.35 - 1.00 10.35 -
3 S10 - 0.00 - 3.90 0.00 -
4 S11 = 2.80x3.45x20 193.20 - 2.50 483.00 -
5 S12 = 0.5x0.25x2.80x20 7.00 - 2.97 20.77 -
TOTAL 255.87


c) EARTH PRESSURES DUE TO BACKFILL AND SURCHARGE
1 Pa 146.89 - - 1.68 0.00 0.00
2 PaH - 132.86 2.29 0.00 304.78
3 PaV 62.66 - 3.90 244.37

4 LLS - 0.00 2.73 0.00 0.00
TOTAL

400.66 132.86 995.23 304.78

Total Vertical Load = 400.66 kN
Total Horizontal Load = 132.86 kN
Total Restoring Moment = 995.23 kN-m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 111

Total Overturning Moment = 304.78 kN-m
 = 1.72
F.O.S against Sliding = 1.51
F.O.S against Overturning = 3.27
Eccentricity = 0.23
Base Pressure at Toe = 138.57 kN/m
2

Base Pressure at Heel = 66.90 kN/m
2

8.3.2. ULTIMATE LIMIT STATE DESIGN (U.L.S)- STRENGTH (BASIC
COMBINATION)
ULTIMATE LIMIT STATE DESIGN (BASIC COMBINATION)
Sl.
No
DESCRIPTION
FORCES (kN)
LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 110.87 0.00

144.20 0.00
2 Weight of Soil on heel 383.81 0.00

966.07 0.00
3 AEP
PaH 0.00 199.28 2.29 0.00 457.17
PaV 93.99 0.00 3.90 366.56 0.00
4 LLS 0.00 0.00 2.73 0.00 0.00
TOTAL

588.67 199.28

1476.82 457.17

Total Vertical Load = 588.67 kN
Total Horizontal Load = 199.28 kN
Total Restoring Moment = 1476.82 kN-m
Total Overturning Moment = 457.17 kN-m
 = 1.73
F.O.S against Sliding = 1.48
F.O.S against Overturning = 3.23
Eccentricity = 0.22
Base Pressure at Toe = 201.53 kN/m
2

Base Pressure at Heel = 100.35 kN/m
2

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 112

A) DESIGN OF STEM










Fig. 8.17: Section 3-3 -Forces acting on Stem- Basic Combination
Design of Forces
Sl.
No.
Section
from
top
Wall
thickness
Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-m)
S.F
(kN)
1 2.15 487.00 1000 0.00 1.075 34.14 0.903 30.828 34.14
2 3.45 600.00 1000 0.00 1.73 79.51 1.45 115.20 79.51

 REINFORCEMENT CALCULATIONS
Reinforcement Calculations
Sl.
No.
Section
from top
Depth
(D)
d required
(mm)
d provided
(mm)
M
u

(kN-m)
M
ulim

(kN-m)
Ast reqd
(mm
2
)
c/c
spacing
provided
Ast pro.
1 2.15 487.00 95.93 406.00 30.83 552.20 480.00 230.00 491.73
2 3.45 600.00 185.44 519.00 115.20 902.36 720.00 115.00 983.46
Hence, provide 12Ø @ 115mm c/c as main reinforcement and provide Ast min = 672.10 mm
2

i.e. 10 Ø @ 115mm c/c as distribution steel.
Hence, curtail alternate bars at a distance of 1.30 m from bottom of the stem.





0.6m
0.3m
3.45 m
79.51
kN/m
2

AEP

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 113

 CHECK FOR SHEAR
Section
Breadth
(mm)
V
ED. ρ1 σcp
k V Rd.c (V Rd.c)min CHECK
2.15 1000 34.14 0.001211 0 1.7019 111.02 139.72 SAFE
3.45 1000.00 79.51 0.001895 0 1.6208 156.6801176 148.72 SAFE

B) DESIGN OF FOOTING











Fig. 8.18: Section 3-3 - Upward bearing pressure for footing- Basic Combination
 SECTION 1: FOR HEEL SLAB
Section 1

Sl.No Description Force Lever Arm Moment

1 Self-Weight of Heel Slab
28.35 1.40 39.69 S6
11.81 0.93 11.03 S7
2 Weight of Soil Above Heel Slab
55.46 1.87 103.53
S8
11.89 1.40 16.64
0.00 0.000 0.00 S10
289.80 1.40 405.72 S11
10.50 1.87 19.60 S12
3 P v 93.99 2.80 263.17

4 Base Pressure on Heel
-280.97 1.40 -393.36

-101.71 0.93 -94.93
TOTAL 119.12 371.09

3.9 m
S/N 2
0.3 m
0.465 m
0.5 m 0.6 m 2.8 m
0.55 m
201.53
N/mm
2

100.35
N/mm
2

172.99
N/mm
2

188.56
N/mm
2

200.63
N/mm
2

S/N 1 S/N 3

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 114

 SECTION 2: FOR TOE SLAB
Section 2

Sl.No Description Force Lever Arm Moment

1 Self-Weight of Toe Slab
2.11 0.17 0.35 S4
5.06 0.25 1.27 S5
2 Base Pressure on Toe
-94.28 0.25 -23.57
-3.24 0.33 -1.08
TOTAL -90.35 -23.03

 SECTION 3: FOR TOE SLAB CRITICAL SECTION
Section 3

Sl.No Description Force Lever Arm Moment

1 Self-Weight of Toe Slab
0.01 0.010 0.00 S4
0.31 0.02 0.00 S5
2 Base Pressure on Toe
-6.22 0.02 -0.10

-0.01 0.02 0.00
TOTAL

-5.91

-0.09


 SECTION FORCES
Section Forces
Section
Overall Depth
(D)
Effective Depth
(d)
Breadth
b
(mm)
B.M
(kN-m)
S.F
(kN)
1 550.00 465.00 1000 371.09 119.12
2 550.00 469.00 1000 -23.03 -90.35
3 317.50 236.50 1000 -0.09 -5.91

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 115

 REINFORCEMENT CALCULATIONS
Reinforcement Details
Section
Depth
(D)
d required
(mm)
dprovided
(mm)
M
u

(kN-m)
M
ulim

(kN-m)
A
st min

(mm
2
)
Ast reqd
(mm
2
)
c/c
spacing
provided
Ast pro
(mm
2
)
1 550.00 332.83 465.00 371.09 724.35 660.00 2009.11 115.00 2731.82
2 550.00 82.92 469.00 23.03 736.87 660.00 113.51 170.00 665.28
3 317.50 5.23 236.50 0.09 187.37 381.00 0.89 170.00 665.28
Hence, Provide
 20mm Ø bars at 115 mm c/c at section 1
 12mm Ø bars at 170 mm c/c at section 2
 12mm Ø bars at 170 mm c/c at section 3
 CHECK FOR SHEAR
Section
Breadth
(mm)
V
ED. ρ1 σcp k V Rd.c (V Rd.c)min CHECK
1 1000.00 119.12 0.0058749 0.00 1.6558 149.11531 153.57 SAFE
3 1000.00 5.91 0.0028130 0.00 1.9196 2.1315572 97.49 SAFE

8.3.3. LIMIT STATE OF SERVICEABILITY (RARE COMBINATION)
ULTIMATE LIMIT STATE DESIGN (RARE COMBINATION)
Sl.
No
DESCRIPTION
FORCES (kN)
LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 116.86 0.00

203.00 0.00
2 Weight of Soil on heel 468.58 0.00

1536.55 0.00
3
Active Earth
Pressure
P
aH 0.00 140.98 2.89 0.00 407.72
PaV 0.00 0.00 5.10 0.00 0.00
4 LLS 0.00 39.27 3.44 0.00 135.20
TOTAL 585.44 180.24 1739.55 542.92

Total Vertical Load = 585.44 kN
Total Horizontal Load = 180.24 kN
Total Restoring Moment = 1739.55 kN-m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 116

0.3m
Total Overturning Moment = 542.92 kN-m
 = 2.04
F.O.S against Sliding = 1.62
F.O.S against Overturning = 3.20
Eccentricity = 0.51
Base Pressure at Toe = 183.13 kN/m
2

Base Pressure at Heel = 46.46 kN/m
2
A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.19: Section 3-3 -Forces acting on Stem- Rare Combination
 DESIGN FORCES
Sl.
No.
Section
from
top
Wall
thickness

(mm)
Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-
m)
S.F
(kN)
1 2.15 487.00 1000 0.00 1.075 23.185 0.903 21.13 23.185
2 3.45 600.00 1000 30.82 2.70 130.05 2.27 378.43 160.86

 STRESS CHECK
Sl.
No.
Section h d B.M A s N.A I cr
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
1 2.15 487.00 406 21.13 491.73 78.40 1.09E+09 121.79 1.53
2 3.45 600.00 515.00 378.43 2855.99 194.99 8.55E+09 294.45 8.63


130.05
kN/m
2

AEP
0.6m
3.45 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 117

B) DESIGN OF FOOTING












Fig. 8.20: Section 3-3 -Upward bearing pressure for footing- Rare Combination

 SECTION 1: FOR HEEL
Section 1
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Heel Slab
27.00 1.80 48.60 S6
11.25 1.20 13.50 S7
2 Weight of Soil Above Heel Slab
13.25 1.12 14.81
S8
4.74 0.84 3.97
35.86 2.64 94.60 S10
389.09 1.80 700.36 S11
9.00 2.40 21.60 S12
3 P v 0.00 3.60 0.00

3 Base Pressure on Heel
-167.24 1.80 -301.04
-173.65 1.20 -208.38
TOTAL 149.30 388.02




S/N 2
0.3 m
118.35
N/mm
2

66.90
N/mm
2

5.0 m
3.8 m 0.6 m 0.6 m
0.60 m
S/N 1
0.465 m
138.57
N/mm
2

129.38
N/mm
2

138.00
N/mm
2

S/N 3

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 118

 SECTION 2: FOR TOE
Section 2
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Toe Slab
2.81 0.30 0.84 S4
6.75 0.45 3.04 S5
2 Base Pressure on Toe
-143.11 0.45 -64.40
-10.85 0.60 -6.51
TOTAL -144.40 -67.03

 SECTION 3: FOR TOE CRITICAL SECTION
Section 3
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Toe Slab
0.651 0.14 0.09 S4
3.23 0.22 0.70 S5
2 Base Pressure on Toe
-73.95 0.22 -15.94
-2.49 0.29 -0.72
TOTAL -72.55 -15.86
 SECTION FORCES
Section Forces
Section
Overall Depth
D
(mm)
Breadth
B
(mm)
Effective Depth (d)
B.M
(kN-m)
S.F
(kN)
1 550.00 1000 465.00 388.02 149.30
2 550.00 1000 469.00 -67.03 -144.40
3 420.83 1000 339.83 -15.86 -72.55

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 119

 CHECK FOR STRESS
Section
Overall
Depth
(h)
Effective
Depth
(d)
Bending
Moment
(M)
A
s N.A I cr
σ
sc
(N/mm
2
)
σ
c
(N/mm
2
)
1 550.00 465.00 388.02 3490.66 197.20 7.76E+09 278.41 9.86
2 550.00 469.00 67.03 837.76 111.60 2.69E+09 185.29 2.78
3 420.83 339.83 15.86 837.76 92.79 1.33E+09 61.29 1.11

8.3.4. LIMIT STATE OF SERVICEABILITY (QUASI PERMANENT
COMBINATION)
ULTIMATE LIMIT STATE DESIGN (QUASI PERMANENT COMBINATION)
Sl.
No
DESCRIPTION
FORCES (kN)
LEVER
ARM
MOMENTS
(kN-m)
VERTICAL HORIZONTAL MR M O
1 Self-Weight 116.86

203.00

2 Weight of Soil on heel 468.58

1536.55

3
Active Earth
Pressure
P
aH 0.00 140.98 2.89 0.00 407.72
PaV 0.00 0.00 5.10 0.00 0.00
4 LLS 0.00 0.00 3.44 0.00 0.00
TOTAL 585.44 140.98 1739.55 407.72

Total Vertical Load = 585.44 kN
Total Horizontal Load = 140.98 kN
Total Restoring Moment = 1739.55 kN-m
Total Overturning Moment = 407.72 kN-m
 = 2.27
F.O.S against Sliding = 2.08
F.O.S against Overturning = 4.27
Eccentricity = 0.28
Base Pressure at Toe = 151.94 kN/m
2

Base Pressure at Heel = 77.64 kN/m
2

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 120

0.3m
A) DESIGN OF STEM
 FORCES ACTING ON STEM









Fig. 8.21: Section 3-3 -Forces acting on Stem- Quasi Permanent
Design of Forces
Section
from
top
Wall
thickness
Breadth
b
(mm)
LLS
Lever
Arm
(m)
Active
Earth
Pressure
Lever
Arm
(m)
B.M
(kN-m)
S.F
(kN)
2.15 487.00 1000 0.00 1.075 23.185 0.903 21.13 23.185
5.40 600.00 1000 0.00 2.70 130.05 2.27 295.17 130.05

 CHECK FOR CRACK WIDTH
Section
from
top
σ
sc
(N/mm
2
)

σc
(N/mm
2
)
hc eff A c eff ρ p eff ϵ s-ϵm S r max W k
2.15 121.786 1.527 127.20 127198.82 0.00387 0.000365 782.70 0.2864
5.15 229.66 6.73 135.00 135003.94 0.02115 0.0006890 415.72 0.2864








130.05
kN/m
2

AEP
0.6m
4.38 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 121

B) DESIGN OF FOOTING












Fig. 8.22: Section 3-3 -Upward bearing pressure for footing- Quasi Permanent
 SECTION 1: AT HEEL SLAB
Section 1 (D=0.8m)
Sl.No Description Force Lever Arm Moment

1 Self-Weight of Heel Slab
27.00 1.80 48.60 S6
11.25 1.20 13.50 S7
2 Weight of Soil Above Heel Slab
13.25 1.12 14.81
S8
4.74 0.84 3.97
35.86 2.638 94.60 S10
389.09 1.80 700.36 S11
9.00 2.40 21.60 S12
3 P v 0.00 3.60 0.00

4 Base Pressure on Heel
-279.52 1.80 -503.13

-94.40 1.20 -113.28
TOTAL

116.28

281.03





0.3 m
5.0 m
66.90
N/mm
2

118.35
N/mm
2

129.38
N/mm
2


138.00
N/mm
2

138.57
N/mm
2

3.8 m
0.60 m
S/N 1 S/N 3 S/N 2
0.465m
0.6 m 0.6 m

Design and Detailing of Box Culvert

DEPARTMENT OF CIVIL ENGINEERING, B.I.T. Page 122

 SECTION 2: AT TOE SLAB
Section 2
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
2.81 0.30 0.84 S4
6.75 0.45 3.04 S5
2 Base Pressure on Toe
-124.95 0.45 -56.23
-5.90 0.60 -3.54
TOTAL -121.28 -55.88

 SECTION 3: AT TOE CRITICAL SECTION
Section 3
Sl.No Description Force Lever Arm Moment
1 Self-Weight of Toe Slab
0.651 0.14 0.09 S4
3.23 0.22 0.70 S5
2 Base Pressure on Toe
-62.78 0.22 -13.53
-1.35 0.29 -0.39
TOTAL -60.25 -13.13

 SECTION FORCES
Section
Overall
Depth (D)
Breadth
b
(mm)
Effective
Depth (d)
B.M
(kN-m)
S.F
(kN)
1 550.00 1000 465.00 281.03 116.28
2 550.00 1000 469.00 -55.88 -121.28
3 420.83 1000 175.92 -13.13 -60.25

 CHECK FOR CRACK WIDTH
Section
σsc
(N/mm
2
)
σ
c
(N/mm
2
)
h
c eff A c eff ρ p eff ϵ s-ϵm S r max W k
1 201.65 7.14 117.60 117600.14 0.02968 0.0006132 369.55 0.2266
2 154.49 2.32 146.13 146131.92 0.00573 0.0004635 610.84 0.2831
3 17.07 0.92 109.35 109348.30 0.00766 0.0000512 521.27 0.0267
Hence O.K

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T Page 123











CHAPTER 09
CONCLUSIONS

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T Page 124

9.0. CONCLUSIONS
 Internship helped a lot to know the industry, their requirement and encouraged us as a
professional. Communication and interactions with industry personnel narrowed the gap
between academics and industry.
 The basic concepts learnt in mechanics, Fluid Mechanics, Hydraulics and RCC stand the
same and are used correspondingly in respective stage of the design.
 As an intern, we learned a lot about the industry and the work process. Though we were
interns, we followed professional ethics.
 Problems and designs done in classes are of assumptions or hypothetical type. But, in our
internship the project assigned to us and designed for was in existence rather than
imagination.

Design and Detailing of Box Culvert

Department of Civil Engineering Page 125












ANNEXURE-I

Design and Detailing of Box Culvert

Department of Civil Engineering Page 126

ANNEXURE-I
IA. STAAD INPUT
STAAD PLANE
START JOB INFORMATION
ENGINEER DATE 22-Sep-16
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 3.3 0 0; 3 6.6 0 0; 4 0 3.079 0; 5 3.3 3.079 0; 6 6.6 3.079 0;
MEMBER INCIDENCES
1 1 2; 2 2 3; 3 4 5; 4 5 6; 5 1 4; 6 2 5; 7 3 6;
MEMBER PROPERTY AMERICAN
3 TO 5 7 PRIS YD 0.4 ZD 1
6 PRIS YD 0.2 ZD 1
1 2 PRIS YD 0.45 ZD 1
DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 1.66958e+007
POISSON 0.17
DENSITY 25
ALPHA 1e-005
DAMP 0.05
END DEFINE MATERIAL
CONSTANTS
MATERIAL CONCRETE ALL
SUPPORTS
1 TO 3 PINNED
LOAD 1 LOADTYPE Dead TITLE DEAD LOAD
SELFWEIGHT Y -1 LIST 1 TO 7
MEMBER LOAD
1 2 UNI GY 32.9129
LOAD 2 LOADTYPE Dead TITLE SIDL

Design and Detailing of Box Culvert

Department of Civil Engineering Page 127

MEMBER LOAD
3 4 UNI GY -36.6
1 2 UNI GY 36.6
LOAD 3 LOADTYPE Soil TITLE EP
MEMBER LOAD
5 TRAP GX 51.29 20.3
7 TRAP GX -51.29 -20.3
LOAD 4 LOADTYPE Live TITLE LIVE LOAD SURCHARGE
MEMBER LOAD
5 UNI GX 12
7 UNI GX -12
LOAD 5 LOADTYPE Live TITLE CLASS 70R WHEELED CASE-1
MEMBER LOAD
3 UNI GY -8.5 0 2.93
3 UNI GY -8.5 0.37 3.3
4 UNI GY -8.5 0 1
1 TRAP GY 19.569 8.822 0 3.3
2 TRAP GY 8.822 -1.925 0 3.3
LOAD 6 LOADTYPE Live TITLE CLASS 70R WHEELED CASE-2
MEMBER LOAD
3 UNI GY -8.5 0 2.37
3 UNI GY -8.5 0 3.3
4 UNI GY -8.5 0 0.44
3 UNI GY -8.5 2.86 3.3
4 UNI GY -8.5 0 3.3
4 UNI GY -8.5 0.93 3.3
1 2 UNI GY 15.74
LOAD 7 LOADTYPE Live TITLE CLASS 70R WHEELED CASE-3
MEMBER LOAD
3 UNI GY -8.5 0 1.81
3 UNI GY -8.5 0 3.18
3 UNI GY -8.5 2.3 3.3
4 UNI GY -8.5 0 2.93
4 UNI GY -8.5 0.37 3.3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 128

1 TRAP GY 14.55 15.25
2 TRAP GY 15.25 15.95
LOAD 8 LOADTYPE Live TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CASE-1
MEMBER LOAD
3 UNI GY -10 0 3
3 UNI GY -10 0.3 3.3
4 UNI GY -10 0 0.92
1 TRAP GY 23.535 10.485
2 TRAP GY 10.485 -2.565
LOAD 9 LOADTYPE Live TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CASE-2
MEMBER LOAD
3 UNI GY -10 0.73 3.3
4 UNI GY -10 0 1.35
3 UNI GY -10 1.95 3.3
4 UNI GY -10 0 2.57
1 2 UNI GY 11.8788
LOAD 10 LOADTYPE Live TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CASE-3
MEMBER LOAD
3 UNI GY -10 2.38 3.3
4 UNI GY -10 0 3
4 UNI GY -10 0.3 3.3
1 TRAP GY -2.55 10.5
2 TRAP GY 10.5 23.55
LOAD 11 LOADTYPE Live TITLE CLASS 70R TRACKED
MEMBER LOAD
3 4 UNI GY -20.21
1 2 UNI GY 20.21
LOAD 12 LOADTYPE Live REDUCIBLE TITLE CLASS-A SINGLE LANE CASE-1
MEMBER LOAD
3 UNI GY -7.24 0 3.01
3 UNI GY -7.24 0.3 3.3
4 UNI GY -7.24 0 0.91
4 UNI GY -1.85 0.25 3.3
4 UNI GY -1.85 1.35 3.3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 129

1 TRAP GY 16.05 9
2 TRAP GY 9 1.9535
LOAD 13 LOADTYPE Live TITLE CLASS-A SINGLE LANE CASE-2
MEMBER LOAD
3 UNI GY -7.24 0.75 3.3
4 UNI GY -7.24 0 1.36
3 UNI GY -7.24 1.95 3.3
4 UNI GY -7.24 0 2.56
1 2 UNI GY 8.58
LOAD 14 LOADTYPE Live TITLE CLASS-A SINGLE LANE CASE-3
MEMBER LOAD
3 UNI GY -4.46 0 1.98
3 UNI GY -7.24 2.4 3.3
4 UNI GY -7.24 0 3.01
4 UNI GY -7.24 0.3 3.3
1 TRAP GY 2.29 8.93
2 TRAP GY 8.93 15.57
LOAD 15 LOADTYPE Live TITLE CLASS-A TWO LANE CASE-1
MEMBER LOAD
3 UNI GY -14.5 0 3
3 UNI GY -14.5 0.3 3.3
4 UNI GY -14.5 0 0.92
4 UNI GY -3.7 0.3 3.3
4 UNI GY -3.7 1.35 3.3
1 TRAP GY 31.95 17.98
2 TRAP GY 17.98 4.01
LOAD 16 LOADTYPE Live TITLE CLASS-A TWO LANE CASE-2
MEMBER LOAD
3 UNI GY -14.5 0.75 3.3
4 UNI GY -14.5 0 1.36
3 UNI GY -14.5 1.95 3.3
4 UNI GY -14.5 0 2.56
1 2 UNI GY 17.16
LOAD 17 LOADTYPE Live TITLE CLASS-A TWO LANE CASE-3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 130

MEMBER LOAD
3 UNI GY -8.92 0 1.98
3 UNI GY -14.5 2.4 3.3
4 UNI GY -14.5 0 3.01
4 UNI GY -14.5 0.3 3.3
1 TRAP GY 4.49 17.86
2 TRAP GY 17.86 31.23
LOAD COMBINATION 101
1 1.5 2 1.5 3 1.5 4 1.2 15 1.5
PERFORM ANALYSIS PRINT STATICS LOAD
FINISH

Design and Detailing of Box Culvert

Department of Civil Engineering Page 131

I.B. STAAD OUTPUT
1. STAAD PLANE
INPUT FILE: Box Culvert.STD
2. START JOB INFORMATION
3. ENGINEER DATE 22-SEP-16
4. END JOB INFORMATION
5. INPUT WIDTH 79
6. UNIT METER KN
7. JOINT COORDINATES
8. 1 0 0 0; 2 3.3 0 0; 3 6.6 0 0; 4 0 3.079 0; 5 3.3 3.079 0; 6 6.6 3.079 0
9. MEMBER INCIDENCES
10. 1 1 2; 2 2 3; 3 4 5; 4 5 6; 5 1 4; 6 2 5; 7 3 6
11. MEMBER PROPERTY AMERICAN
12. 3 TO 5 7 PRIS YD 0.4 ZD 1
13. 6 PRIS YD 0.2 ZD 1
14. 1 2 PRIS YD 0.45 ZD 1
15. DEFINE MATERIAL START
16. ISOTROPIC CONCRETE
17. E 1.66958E+007
18. POISSON 0.17
19. DENSITY 25
20. ALPHA 1E-005
21. DAMP 0.05
22. END DEFINE MATERIAL
23. CONSTANTS
24. MATERIAL CONCRETE ALL
25. SUPPORTS
26. 1 TO 3 PINNED
27. LOAD 1 LOADTYPE DEAD TITLE DEAD LOAD
28. SELFWEIGHT Y -1 LIST 1 TO 7
29. MEMBER LOAD
30. 1 2 UNI GY 32.9129
31. LOAD 2 LOADTYPE DEAD TITLE SIDL

Design and Detailing of Box Culvert

Department of Civil Engineering Page 132

32. MEMBER LOAD
33. 3 4 UNI GY -36.6
34. 1 2 UNI GY 36.6
35. LOAD 3 LOADTYPE SOIL TITLE EP
36. MEMBER LOAD
37. 5 TRAP GX 51.29 20.3
38. 7 TRAP GX -51.29 -20.3
39. LOAD 4 LOADTYPE LIVE TITLE LIVE LOAD SURCHARGE
40. MEMBER LOAD
41. 5 UNI GX 12
42. 7 UNI GX -12
43. LOAD 5 LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-1
44. MEMBER LOAD
45. 3 UNI GY -8.5 0 2.93
46. 3 UNI GY -8.5 0.37 3.3
47. 4 UNI GY -8.5 0 1
48. 1 TRAP GY 19.569 8.822 0 3.3
49. 2 TRAP GY 8.822 -1.925 0 3.3
50. LOAD 6 LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-2
51. MEMBER LOAD
52. 3 UNI GY -8.5 0 2.37
53. 3 UNI GY -8.5 0 3.3
54. 4 UNI GY -8.5 0 0.44
55. 3 UNI GY -8.5 2.86 3.3
56. 4 UNI GY -8.5 0 3.3
57. 4 UNI GY -8.5 0.93 3.3
58. 1 2 UNI GY 15.74
59. LOAD 7 LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-3
60. MEMBER LOAD
61. 3 UNI GY -8.5 0 1.81
62. 3 UNI GY -8.5 0 3.18
63. 3 UNI GY -8.5 2.3 3.3
64. 4 UNI GY -8.5 0 2.93
65. 4 UNI GY -8.5 0.37 3.3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 133

66. 1 TRAP GY 14.55 15.25
67. 2 TRAP GY 15.25 15.95
68. LOAD 8 LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD
CASE-1
69. MEMBER LOAD
70. 3 UNI GY -10 0 3
71. 3 UNI GY -10 0.3 3.3
72. 4 UNI GY -10 0 0.92
73. 1 TRAP GY 23.535 10.485
74. 2 TRAP GY 10.485 -2.565
75. LOAD 9 LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD
CASE-2
76. MEMBER LOAD
77. 3 UNI GY -10 0.73 3.3
78. 4 UNI GY -10 0 1.35
79. 3 UNI GY -10 1.95 3.3
80. 4 UNI GY -10 0 2.57
81. 1 2 UNI GY 11.8788
82. LOAD 10 LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD
CASE-3
83. MEMBER LOAD
84. 3 UNI GY -10 2.38 3.3
85. 4 UNI GY -10 0 3
86. 4 UNI GY -10 0.3 3.3
87. 1 TRAP GY -2.55 10.5
88. 2 TRAP GY 10.5 23.55
89. LOAD 11 LOADTYPE LIVE TITLE CLASS 70R TRACKED
90. MEMBER LOAD
91. 3 4 UNI GY -20.21
92. 1 2 UNI GY 20.21
93. LOAD 12 LOADTYPE LIVE REDUCIBLE TITLE CLASS-A SINGLE LANE CASE-1
94. MEMBER LOAD
95. 3 UNI GY -7.24 0 3.01
96. 3 UNI GY -7.24 0.3 3.3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 134

97. 4 UNI GY -7.24 0 0.91
98. 4 UNI GY -1.85 0.25 3.3
99. 4 UNI GY -1.85 1.35 3.3
100. 1 TRAP GY 16.05 9
101. 2 TRAP GY 9 1.9535
102. LOAD 13 LOADTYPE LIVE TITLE CLASS-A SINGLE LANE CASE-2
103. MEMBER LOAD
104. 3 UNI GY -7.24 0.75 3.3
105. 4 UNI GY -7.24 0 1.36
106. 3 UNI GY -7.24 1.95 3.3
107. 4 UNI GY -7.24 0 2.56
108. 1 2 UNI GY 8.58
109. LOAD 14 LOADTYPE LIVE TITLE CLASS-A SINGLE LANE CASE-3
110. MEMBER LOAD
111. 3 UNI GY -4.46 0 1.98
112. 3 UNI GY -7.24 2.4 3.3
113. 4 UNI GY -7.24 0 3.01
114. 4 UNI GY -7.24 0.3 3.3
115. 1 TRAP GY 2.29 8.93
116. 2 TRAP GY 8.93 15.57
117. LOAD 15 LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-1
118. MEMBER LOAD
119. 3 UNI GY -14.5 0 3
120. 3 UNI GY -14.5 0.3 3.3
121. 4 UNI GY -14.5 0 0.92
122. 4 UNI GY -3.7 0.3 3.3
123. 4 UNI GY -3.7 1.35 3.3
124. 1 TRAP GY 31.95 17.98
125. 2 TRAP GY 17.98 4.01
126. LOAD 16 LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-2
127. MEMBER LOAD
128. 3 UNI GY -14.5 0.75 3.3
129. 4 UNI GY -14.5 0 1.36
130. 3 UNI GY -14.5 1.95 3.3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 135

131. 4 UNI GY -14.5 0 2.56
132. 1 2 UNI GY 17.16
133. LOAD 17 LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-3
134. MEMBER LOAD
135. 3 UNI GY -8.92 0 1.98
136. 3 UNI GY -14.5 2.4 3.3
137. 4 UNI GY -14.5 0 3.01
138. 4 UNI GY -14.5 0.3 3.3
139. 1 TRAP GY 4.49 17.86
140. 2 TRAP GY 17.86 31.23
141. LOAD COMBINATION 101
142. 1 1.5 2 1.5 3 1.5 4 1.2 15 1.5
143. PERFORM ANALYSIS PRINT STATICS CHECK
P R O B L E M S T A T I S T I C S
-----------------------------------
NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 6/ 7/ 3
SOLVER USED IS THE IN-CORE ADVANCED SOLVER
TOTAL PRIMARY LOAD CASES = 17, TOTAL DEGREES OF FREEDOM = 12
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 1
LOADTYPE DEAD TITLE DEAD LOAD
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.330000008E+01
Y = -0.229812465E+07
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 1 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 1.3999111E-04
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 4.5852264E-04
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 1 )
SUMMATION FORCE-X = 1.4815554E-15
SUMMATION FORCE-Y = -1.3999111E-04

Design and Detailing of Box Culvert

Department of Civil Engineering Page 136

SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= -4.5852264E-04
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 1)
MAXIMUMS AT NODE
X = 5.19982E-05 6
Y = -4.21518E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -9.04008E-05 3
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 2
LOADTYPE DEAD TITLE SIDL
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 2 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 0.0000000E+00
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 0.0000000E+00
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 2 )
SUMMATION FORCE-X = -4.9385181E-16
SUMMATION FORCE-Y = 1.5803258E-14
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 5.1379552E-14
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 2)
MAXIMUMS AT NODE
X = -1.19498E-04 6
Y = -1.25079E-02 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 2.18657E-04 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 3

Design and Detailing of Box Culvert

Department of Civil Engineering Page 137

LOADTYPE SOIL TITLE EP
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 3 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 0.0000000E+00
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 0.0000000E+00
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 3 )
SUMMATION FORCE-X = -7.9016290E-15
SUMMATION FORCE-Y = 3.9508145E-15
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 6.1013217E-14
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 3)
MAXIMUMS AT NODE
X = -2.21144E-03 6
Y = 1.27181E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -1.55890E-04 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 4
LOADTYPE LIVE TITLE LIVE LOAD SURCHARGE
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 4 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 0.0000000E+00
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 0.0000000E+00
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 4 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 4.9385181E-16
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=

Design and Detailing of Box Culvert

Department of Civil Engineering Page 138

0.0000000E+00 MY= 0.0000000E+00 MZ= 6.4224439E-15
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 4)
MAXIMUMS AT NODE
X = 8.83161E-04 4
Y = 4.50352E-04 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 5.52011E-05 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 5
LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-1
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.259806673E+02
Y = 0.211712248E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 5 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = -8.4802132E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.37
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 5 )
SUMMATION FORCE-X = -4.1977404E-15
SUMMATION FORCE-Y = 8.4802132E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.37
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 5)
MAXIMUMS AT NODE
X = 4.15086E-03 4
Y = -3.32715E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0

Design and Detailing of Box Culvert

Department of Civil Engineering Page 139

RY= 0.00000E+00 0
RZ= -1.26031E-04 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 6
LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-2
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.329949978E+01
Y = -0.228592878E+05
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 6 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 1.3990626E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 4.6164655E-02
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 6 )
SUMMATION FORCE-X = -4.9385181E-16
SUMMATION FORCE-Y = -1.3990626E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= -4.6164655E-02
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 6)
MAXIMUMS AT NODE
X = -5.66165E-05 6
Y = -5.12117E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 9.65418E-05 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 7
LOADTYPE LIVE TITLE CLASS 70R WHEELED CASE-3
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = -0.147339656E+03

Design and Detailing of Box Culvert

Department of Civil Engineering Page 140

Y = 0.413479200E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 7 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = -7.5005539E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 9.97
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 7 )
SUMMATION FORCE-X = 1.9754073E-15
SUMMATION FORCE-Y = 7.5005539E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -9.97
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 7)
MAXIMUMS AT NODE
X = -3.36223E-04 6
Y = -5.13289E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 9.94887E-05 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 8
LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CA
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = -0.252529241E+04
Y = -0.214569747E+06
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 8 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 9.9299564E-04
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=

Design and Detailing of Box Culvert

Department of Civil Engineering Page 141

0.0000000E+00 MY= 0.0000000E+00 MZ= 2.8284794E-02
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 8 )
SUMMATION FORCE-X = -4.0742775E-15
SUMMATION FORCE-Y = -9.9299564E-04
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= -2.8284794E-02
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 8)
MAXIMUMS AT NODE
X = 4.95226E-03 4
Y = -3.92225E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -1.50781E-04 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 9
LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CA
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.334400008E+01
Y = -0.303485540E+07
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 9 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 7.9540402E-05
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 2.6425910E-04
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 9 )
SUMMATION FORCE-X = 1.2346295E-16
SUMMATION FORCE-Y = -7.9540402E-05
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= -2.6425910E-04

Design and Detailing of Box Culvert

Department of Civil Engineering Page 142

STAAD PLANE -- PAGE NO. 11
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 9)
MAXIMUMS AT NODE
X = 2.75042E-05 4
Y = -5.44883E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -6.55527E-05 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 10
LOADTYPE LIVE TITLE CLASS 70R WHEELED MAXIMUM BODIE LOAD CA
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.284102641E+02
Y = -0.213078863E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 10 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 9.9994349E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.30
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 10 )
SUMMATION FORCE-X = 5.4323699E-15
SUMMATION FORCE-Y = -9.9994349E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.30
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 10)
MAXIMUMS AT NODE
X = -4.95216E-03 6
Y = -3.92236E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0

Design and Detailing of Box Culvert

Department of Civil Engineering Page 143

RY= 0.00000E+00 0
RZ= 1.50795E-04 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 11
LOADTYPE LIVE TITLE CLASS 70R TRACKED
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 11 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 0.0000000E+00
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 0.0000000E+00
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 11 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 0.0000000E+00
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 0.0000000E+00
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 11)
MAXIMUMS AT NODE
X = -6.59853E-05 6
Y = -6.90666E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 1.20739E-04 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 12
LOADTYPE LIVE REDUCIBLE TITLE CLASS-A SINGLE LANE CASE-1
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = -0.424222066E+02
Y = -0.332397184E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 12 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 5.4976735E-02

Design and Detailing of Box Culvert

Department of Civil Engineering Page 144

SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.69
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 12 )
SUMMATION FORCE-X = -3.8273516E-15
SUMMATION FORCE-Y = -5.4976735E-02
SUMMATION FORCE-Z = 0.0000000E+00
STAAD PLANE -- PAGE NO. 13
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.69
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 12)
MAXIMUMS AT NODE
X = 2.85530E-03 4
Y = -3.22818E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -1.03350E-04 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 13
LOADTYPE LIVE TITLE CLASS-A SINGLE LANE CASE-2
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = -0.230987506E+02
Y = -0.155655545E+05
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 13 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 1.1199289E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.25
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 13 )
SUMMATION FORCE-X = 4.3212034E-16
SUMMATION FORCE-Y = -1.1199289E-02

Design and Detailing of Box Culvert

Department of Civil Engineering Page 145

SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.25
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 13)
MAXIMUMS AT NODE
X = -6.56829E-05 6
Y = -3.94481E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 4.75799E-05 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 14
LOADTYPE LIVE TITLE CLASS-A SINGLE LANE CASE-3
STAAD PLANE -- PAGE NO. 14
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.272388629E+02
Y = -0.229979048E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 14 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 7.8801737E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= -9.5762212E-02
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 14 )
SUMMATION FORCE-X = 2.8396479E-15
SUMMATION FORCE-Y = -7.8801737E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.0000000E+00 MY= 0.0000000E+00 MZ= 9.5762212E-02
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 14)
MAXIMUMS AT NODE
X = -3.08457E-03 6

Design and Detailing of Box Culvert

Department of Civil Engineering Page 146

Y = -3.11068E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 1.03717E-04 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 15
LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-1
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = -0.301083286E+03
Y = -0.280982167E+05
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 15 )
SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 1.3002204E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.72
STAAD PLANE -- PAGE NO. 15
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 15 )
SUMMATION FORCE-X = -4.5681293E-15
SUMMATION FORCE-Y = -1.3002204E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.72
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 15)
MAXIMUMS AT NODE
X = 5.80092E-03 4
Y = -6.44595E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= -2.06846E-04 4
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 16

Design and Detailing of Box Culvert

Department of Civil Engineering Page 147

LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-2
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.771872660E+01
Y = 0.260542911E+04
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 16 )
SUMMATION FORCE-X = 0.00
SUMMATION FORCE-Y = -0.13
SUMMATION FORCE-Z = 0.00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -1.01
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 16 )
SUMMATION FORCE-X = 0.00
SUMMATION FORCE-Y = 0.13
SUMMATION FORCE-Z = 0.00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 1.01
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 16)
MAXIMUMS AT NODE
X = -1.31720E-04 6
Y = -7.90033E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 9.52694E-05 6
STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 17
LOADTYPE LIVE TITLE CLASS-A TWO LANE CASE-3
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
X = 0.223045160E+03
Y = -0.187006720E+05
Z = 0.000000000E+00
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING 17 )

Design and Detailing of Box Culvert

Department of Civil Engineering Page 148

SUMMATION FORCE-X = 0.0000000E+00
SUMMATION FORCE-Y = 1.9404676E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= -0.18
***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING 17 )
SUMMATION FORCE-X = 5.4323699E-15
SUMMATION FORCE-Y = -1.9404676E-02
SUMMATION FORCE-Z = 0.0000000E+00
SUMMATION OF MOMENTS AROUND THE ORIGINMX=
0.00 MY= 0.00 MZ= 0.18
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING 17)
MAXIMUMS AT NODE
X = -6.13321E-03 6
Y = -6.22902E-03 5
Z = 0.00000E+00 0
RX= 0.00000E+00 0
RY= 0.00000E+00 0
RZ= 2.07678E-04 6
************ END OF DATA FROM INTERNAL STORAGE ************
144. FINISH

Design and Detailing of Box Culvert

Department of Civil Engineering Page 149












ANNEXURE-II

Scale 1:15000
CATCHMENT AREA
CATCHMENT AREA
ANNEXURE II
DRAWING NO.: 01

0.3000
Inspection
Path
1.40
3.0000
0.3000 1.40
Service
Road
1.5
1.5
2.6540
A
B
B
℄ OF NALA
℄ OF CANAL
3.90
SECTION 1-1
SECTION 2-2
SECTION 3-3
3.0000 3.0000
5.7000
0.400
0.450
2.654
U/S WING WALL
D/S WING WALL
582.678- F.B.L.
580.928- C.B.L.
2.0000
CANAL FLOW
6.00
5.7000
BARREL LENGTH
6.7000 5.5000
NALA FLOW
1
1
0.05x0.05
CANAL LINING
NALA FLOWNALA FLOW
VENT OPENINGVENT OPENING
SECTION A-A
WING WALL
18.6000
SECTION B-B
6.00
PLAN
NOTES:
1. ALL LEVELS AND DIMENSIONS ARE IN
METERS.
2. DO NOT SCALE THIS DRAWING. ONLY
WRITTEN DIMENSIONS SHALL BE
FOLLOWED.
3. GRADE OF CONCRETE SHALL:-
a. LEVELING COURSE = M15 PCC
b. BOX & WING WALLS = M25 RCC
TITLE:
PLAN AND SECTIONS OF
BOX CULVERT AT
CHAINAGE 55.680 KM.
1.5:1
1.5:1
1.5:1
1.5:1
SCALE: 1:200
FILTER MEDIA
0.6000
A
150 mm THICK PCC
U/S CUT OFF WALL D/S CUT OFF WALL
MURRUM FILLING
3.0000
3.0000
DRAWING NO: 02ANNEXURE II
577.794- G.L.
580.928- C.B.L.
582.228- F.S.L.
582.678- F.B.L.
577.794- G.L. 577.794- N.B.L
2.00
4.00 6.00 7.0000

0.90 0.90
1.00 1.00
Bar No. Bar dia. Nos./SpacingShape
1 8 200
200
200
115
150
200
200
130
200
120
120
140
120
240
100
10
10
10
10
10
8
10
10
12
8
8
8
8
8
8
12
100
200
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
c/c
0.85
0.90
0.60 0.60
0.60 0.60
8
8
240c/c
270c/c
REINFORCEMENT DETAILS OF BOX CULVERT
3.00 3.00
2.65
0.40
0.45
0.40 0.20 0.40
DIMENSION OF BOX CULVERT
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
8
12+
11
18 3
2
4
18
32+
12
5
6
13
19
78+
8
17+
10
14
15
9
16
19
7 17
PCC 150mm Thick
NOTES:
1. ALL LEVELS AND DIMENSION ARE IN METERS
2. DO NOT SCALE THIS DRAWING. ONLY WRITTEN
DIMENSION SHALL BE FOLLOWED
3. GRADE OF CONCRETE SHALL BE OF:
a. LEVELING COURSE= M15
b. BOX & WING WALLS= M25
4. GRADE OF STEEL SHALL BE Fe 500
CONFIRMING TO IS: 1786-2008
5. - REPRESENTS HYSD BARS OF GRADE Fe 500
6. MINIMUM CLEAR COVER TO REINFORCEMENT
INCLUDING STIRRUPS SHALL BE
a. 75mm FOR SURFACE EXPOSED TO SOIL
B. 40mm FOR INSIDE FACES
7. DEVELOPMENT LENGTH SHALL BE 48

8. LAP LENGTH SHALL BE 1.5 TIMES
Ld
DIMENSIONAL AND REINFORCEMENT
DETAILS OF BOX CULVERT
TABLE 1: BAR SCHEDULE
1
ANNEXURE II DRAWING NO.: 03
‘39&
SEEPAGE PIPES @
1000mm c/c
STAGGERED BOTH
WAYS
Ld

REINFORCEMENT DETAILS OF WING WALL
Bar No.
Bar dia. Nos./Spacing
20 90
270
85
115
170
12
20
20
10
c/c
c/c
c/c
c/c
c/c
SECTION 1-1
25 90
300
120
240
12
16
16
c/c
c/c
c/c
c/c
20 115
340
115
230
12
12
16
c/c
c/c
c/c
c/c
DIMENSION DETAILS OF WING WALL
bt2a
D1
D2
h
h1
b1
H1
H2
t1
Particulars
Dimension
H1
H2
B
a
b
t1
t2
D1
D2
h
b1
SECTION
1-1
SECTION
2-2
SECTION
3-3
FILTER MEDIA
4.00
5.46
3.90
0.50
2.80
0.30
0.60
0.55
0.30
3.45
3.10
25.25
5.95
6.89
5.30
0.90
3.80
0.30
0.60
0.60
0.30
5.35
1.97
0.00
4.98
6.91
5.00
0.50
3.80
0.30
0.60
0.60
0.30
4.38
4.10
25.25
1
3
2
4
5
SECTION 2-2 SECTION 3-3
TABLE 1: SECTION DIMENSION
2
1
3
4
TABLE 2: BAR SCHEDULE
5
h1
5
5
1.80m 1.60m 1.30m
NOTES:
1. ALL LEVELS AND DIMENSION ARE IN METERS
2. DO NOT SCALE THIS DRAWING. ONLY WRITTEN
DIMENSION SHALL BE FOLLOWED
3. GRADE OF CONCRETE SHALL BE OF:
a. LEVELING COURSE = M15
b. BOX & WING WALLS = M25
4. GRADE OF STEEL SHALL BE Fe 500
CONFIRMING TO IS: 1786-2008
5. - REPRESENTS HYSD BARS OF GRADE Fe 500
6. MINIMUM CLEAR COVER TO ALL
REINFORCEMENT INCLUDING STIRRUPS SHALL
BE 75mm UNLESS SHOWN OTHER WISE IN THE
DRAWING
7. DEVELOPMENT LENGTH SHALL BE 48 ‘
8. LAP LENGTH SHALL BE 1.5 TIMES Ld
9. NOT MORE THAN 50% OF THE BARS SHALL BE
LAPPED AT ANY SECTION
10. LAP SPLICES SHALL BE CONSIDERED AS
STAGGERED IF CENTRE TO CENTRE DISTANCE
OF THE SPLICE IS NOT LESS THAN 1.3 METERS
THE LAP LENGTH
11. SOIL PROPERTIES:
D$1*/(2),17(51$/)5,&7,21¥ '
E$1*/(2):$//)5,&7,21/ '
c. COHESION C = 0
G'(16,7<2)&203$&7('%$&.),//
20 kN/cu-m
e. LIVE LOAD SURCHARGE = 1.2m
(EQUIVALENT HEIGHT OF BACKFILL)
f. SAFE BEARING CAPACITY = 200 kN/sqm
4+
3
‘39&
SEEPAGE
PIPES @
1000mm c/c
STAGGERED
BOTH
WAYS
WELL COMPACTED
BACKFILLA AS PER
SPECIFICATION
2a
2a
+
2
2a
27012 c/c
5a
23010 c/c
5a
5a
5a
30012 c/c 34012 c/c
11510 c/c
23010 c/c
11510 c/c
23010 c/c
Bar dia. Nos./Spacing Bar dia. Nos./Spacing
Bar Shape
Ld
DIMENSIONAL AND REINFORCEMENT
DETAILS OF WING WALL
ANNEXURE II DRAWING NO.: 04
PCC 150mm Thick
0.60

Design and Detailing of Box Culvert

Department of Civil Engineering, B.I.T. Page 125

REFERENCES
[1] IRC: 5-1998 Standard Specifications and Code of Practice for Road Bridges,
Section: I General Features of Design
[2] IRC: 6-2014 Standard Specifications and Code of Practice for Road Bridges,
Section: II Loads and Stresses
[3] IRC: 112-2011 Design Criteria for Concrete Road Bridges
[4] IRC: 78-2014 Standard Specifications and Code of Practice for Road Bridges,
Section: VII Foundations and Substructures
[5] IRC: SP 13 -2004 Guidelines for the Design of Small Bridges and Culverts
[6] IS: SP16-1980 Design Aids for Reinforced Concrete to IS 456:1978
[7] Atlas of State wise Generalised Iso-Pluvial Maps of Southern India, Indian
Meteorological Department September 2007