•1
st
flow=Re=2000 (laminar flow at leading edge of
smooth plate)
•2
nd
flow=Re=10000 (turbulent flow at leading edge of
smooth plate)
•The boundary layer thickness of 1
st
flow would be more
as compared to that of the 2
nd
flow.
•1
st
flow=Re=2000 (laminar flow at leading edge of
smooth plate)
•2
nd
flow=Re=2000 (turbulent flow at leading edge of
rough plate)
•The boundary layer thickness of 1
st
flow would be more
as compared to that of the 2
nd
flow.
Von Karman’s Momentum Integral
Equation of Boundary Layer
•Expressestherelationthat
mustexistbetweentheoverall
rateoffluxofmomentum
acrossasectionofthe
boundarylayer,theshear
stressattheboundarysurface
andthepressuregradientin
thedirectionofflow.
•Formsthebasisfor
approximatemethodsof
solvingboundarylayer
problems.
•Itisappliedtobothlaminaras
wellasturbulentboundary
layers.
Von Karman’s Momentum Integral
Equation of Boundary Layer
•ThenetrateofmassflowacrossDFandAE,
outofAEFD
•Therateoftransportofmomentuminthex
directionacrossDFminustherateoftransport
ofmomentuminthexdirectionacrossAEis
•Therateoftransportofmomentuminthex
directionacrossEFoutofAEFDis
Von Karman’s Momentum Integral
Equation of Boundary Layer
•Thusequatingthenetincreaseintherateof
transportofmomentumtothesumofthe
forcesactinginthexdirection,wehave
•Dividingboththesidesoftheaboveequation
byδxandtakingthelimitδx→0,weget
Boundary Layer on Rough Surface
•In the completely rough regime the local drag
coefficient cfand the average drag coefficient
Cfare given by the following expressions.
Laminar flow between parallel flat
plates-both plates at rest
Laminar flow between parallel plates-
both plates at rest
Theshearstressvarieslinearlywiththe
distancefromtheboundary.Ithasthesame
maximumvalueateitherboundary(i.e.,aty=
0ory=B)anddecreaseslinearlywiththe
distancefromtheboundary,withtheresult
thatitisequaltozeroatthecentreline
betweenthetwoplatesi.e.,aty=B/2.
Laminar flow between parallel flat
plates-one plate moving and other at
rest
Thislinearvelocitydistributioncaseisknown
assimpleCouettefloworsimpleshearflow.
Laminar flow between parallel flat
plates-one plate moving and other at
rest
•Theshearstressvaries
linearlywiththe
distancefromthe
boundary.
Fluid Flow Around Submerged
Objects–Drag and Lift
•Forabodymovingthroughafluidofmassdensityρ,atauniform
velocityV,themathematicalexpressionsforthecalculationofthe
dragandtheliftmayalsobewrittenasfollows:
•IntheaboveexpressionsCDandCLareknownasthedragandthe
liftcoefficientsrespectively,bothofwhicharedimensionless.
•TheareaAisacharacteristicarea,whichisusuallytakenaseither
thelargestprojectedareaoftheimmersedbody;ortheprojected
areaoftheimmersedbodyonaplaneperpendiculartothe
directionofflowoffluid.
•Theterm(ρV^2/2)isthedynamicpressureoftheflowingfluid.
Types of Drags due to Viscosity
Real fluid-
viscosity
Boundary layer
development
and No-slip
condition
Velocity
gradient
Shear stress
Surface drag
due to friction
Pressure drag due to
deformation of fluid
particles
Deformation drag = surface drag +
pressure drag (at low Reynolds number)
Separation
of flow
Form drag due to
development of
wake
Deformation drag=surface drag + form
drag(at high Reynolds number)
Types of Drags
Form drag of well
stream-lined bodies <
Form drag of well
rounded bodies < Form
drag of objects having
sharp edges
Surface drag of well
stream-lined bodies >
Surface drag of well
rounded bodies >
Surface drag of objects
having sharp edges
Total drag of well
stream-lined bodies <
Total drag of well
rounded bodies < Total
drag of objects having
sharp edges
DRAG ON A FLAT PLATE
•Inthecaseofaflatplate
thedragcoefficientCDisa
functionofReonlyatlow
andmoderatevaluesofRe.
•However,asthevalueofRe
exceeds10^3,CDassumesa
constantvalueofabout2.0.
•Areductioninthevalueof
CDhoweveroccursifthe
ratioofthelengthLofthe
platetoitswidthBisnot
verylarge.ThevalueofCD
decreasesasthelengthof
theplateisreduced.
DRAG ON A FLAT PLATE
•Forathinflatplateheldperpendiculartotheflow,fordifferent
valuesoftheratiooflengthtobreadth(L/B)oftheplate,thevalues
ofCD,althoughremainsindependentofReynoldsnumberforRe>
1000,itvariesmarkedlywiththe(L/B)ratiooftheplate.
•ThelimitingvalueofCDisequaltoabout2.0foraninfinitelylong
flatplateheldperpendiculartotheflowwhichistwodimensional
incharacter.
•However,becauseoftheflowinthecaseofacirculardischeld
perpendiculartotheflowbeingthree-dimensionalincharacterthe
limitingvalueofCDisonlyabout1.1.
DRAG ON A CYLINDER
•AstheReynoldsnumberincreasesthecontributionofthepressuredragin
thetotaldragincreasesfromaboutonethirdofthetotalatsmall
ReynoldsnumberstoabouthalfofthetotaldragastheReynoldsnumber
increasesandvorticesbegintoform.
•Thecontributionofthepressuredraginthetotaldragfurtherincreasesto
aboutthreequartersofthetotalatReequaltoabout200,whenthe
Karmanvortexstreetiswellestablished.
•AthighvaluesofRethevariationofCDwithReforacylinderfollowsa
patternsimilartothatforasphere.Thedragcoefficientforacylinder
reachesaminimumvalueofabout0.95atRe=2000andthenthereis
slightriseto1.2forRe=3×10^4duetotheincreasingturbulenceinthe
wakeandalsothewideningofthewakeastheseparationpointsgradually
advanceupstream.
DRAG ON A CYLINDER
AtRe=2×10^5theboundarylayerwhichwas
uptonowlaminar,becomesturbulentbefore
separationandthereforethereisadropinthe
valueofCDfrom1.20toabout0.3.
However,withafurtherincreaseinRewhere
CDispracticallyindependentofRedueto
relativelysmallviscouseffects,thevalueofCD
increasesgraduallyfrom0.3toabout0.7over
theapproximaterangeof5×10^5<Re<3×
10^6.
Effect of Free Surface on Drag
•Thegravityforcesbecomepredominantwhentheobjectis
lyingattheinterface(orcommonsurface)betweenthetwo
fluidsofdifferentdensities.Insuchcasesforthe
geometricallysimilarbodiesthedragcoefficientwill
dependonbothReandFr.
•Inthecaseofshipsmovingonthewatersurface,thetotal
draginthecaseofashipisthesumofskinfrictiondrag,
pressure(orform)drag,andthedragduetosurfacewaves.
•Thedifferencebetweenthetotaldragandtheskinfriction
dragiscommonlyknownasresidualdrag.Sincethe
formationofsurfacewavesisassociatedwithgravitational
action,theresidualdragisessentiallyafunctionofFroude
number,whichmay,however,bedeterminedbyship
modelstudies.
EFFECT OF COMPRESSIBILITY ON
DRAG
•Theelasticforcesbecomesignificantwhenthevelocityof
flowapproachesthevelocityofsoundinthatfluid,andthe
dragcoefficientbecomesafunctionofMachnumberMa.
•WiththeincreaseinthevalueofMachnumberthe
compressibilityoffluidhassignificantinfluenceontheflow
characteristicsaswellasthedrag.
•Inacompressibleflowadditionalforcesaretransmitted
throughthefluidbytheshockwavesproduced.
•Theshockwavesareessentiallytheelasticwaves(or
pressurewaves)sphericalinform,whichtravelatthe
velocityofsound,andtheseareproducedinthevicinityof
theobjectimmersedinacompressiblefluidflowingpast
theobject.
EFFECT OF COMPRESSIBILITY ON
DRAG
•Suchshockwaveswithconical
wavefrontareobservedto
extendbackwardsfromthe
leadingedgeoftheobjectsin
thecaseofsupersonicflows
pastimmersedobject.
•Anabruptchangeofpressure
alwaysoccursacrosssucha
shockwavewhichproduces
thedrag.
•Inadditionthedragalso
resultsfromtheenergy
dissipatedintheshockwaves
aswellastheskinfrictionand
theflowseparationeffects.
EFFECT OF SHAPE OF THE OBJECT ON
DRAG
•AthighvaluesofMachnumber,
thedragispractically
independentofReynoldsnumber
whereasatlowvaluesofMach
number,Reynoldsnumberisthe
significantparameter.
•Itmaybenotedfromthese
curvesthatthenumericalvalues
ofCDdropsteadilywhenthenose
ofthebodybecomessuccessively
morepointed,therearofthe
bodyremainingunchangedinall
cases.
•Thisissobecauseinsupersonic
flowasharppointednosecreates
anarrowshockwavefrontwhich
tendstominimizethedrag.
EFFECT OF SHAPE OF THE OBJECT ON
DRAG
•Fromtheabovediscussionitisobservedthatfor
minimumdraginsupersonicflowthebodyshouldhave
asharpforwardedge,orconicalnose,andtheshapeof
therearendisofsecondaryimportance.
•Thisrequirementis,however,thereverseofthatfor
subsonicflows,forwhichasstatedearlierthedragis
theleastforastreamlinedbodywelltaperedatthe
rearandroundedatthefront.
•Thusabodywellstreamlinedforsubsonicflowsmay
bepoorlyshapedforsupersonicflowsandviceversa.
DEVELOPMENT OF LIFT ON
IMMERSED BODIES
•Whenthebodyissymmetrical
withrespecttoitsaxisandso
locatedthatitsaxisisparallelto
thedirectionofmotion,thenthe
resultantforceexertedbythe
fluidonthebodyisinthe
directionofmotion,andinsucha
casetheliftiszero.
•However,iftheaxisofsymmetry
ofthebodymakesananglewith
thedirectionofmotion,the
resultantforceactingonthebody
willhavealiftcomponent.
•Aliftisexertedonacylinderlying
inauniformflowwhena
circulationissuperimposedon
theuniformflowfield.
DEVELOPMENT OF LIFT ON A
CYLINDER
•Thevelocityvofthecompositeflowonthe
surfaceofthecylinderisv=2Vsinθ+Γ/2πR.
•ThepositionofthestagnationpointsS1andS2on
thesurfaceofthecylinder,,maybedetermined
byconsideringv=0andsolvingforsinθwhich
givessinθ=–Γ/4πRV.
•Thenegativesignintheaboveexpressionforsin
θindicatesthatangleθisequalto–θor(180+
θ),sinceinboththesecasessinθisnegative.
DEVELOPMENT OF LIFT ON A
CYLINDER
•TheliftdFLactingonanelementary
surfaceareaofthecylinder(LRdθ)is
givenbydFL=–(LRdθ)psinθin
whichListhelengthofthecylinder.
•Thenegativesignhasbeen
introducedbecausethepressure
forceisalwaysdirectedtowardsthe
surface,andhenceforsinθbeing
positiveitscomponentisnegative
beingintheverticaldownward
direction.
•ThetotalliftFLexertedonthecylinder
isobtainedasFL=ρVLΓ.Thisequation
iscommonlyknownasKutta-
Joukowskiequation.
•TheliftcoefficientCLmaybe
expressedasCL=Γ/RVwhereAisthe
projectedareawhichisequalto2RL.
•Theliftcoefficientmayalsobe
expressedasCL=2πvc/V.
The phenomenon of the lift produced by
circulation around a circular cross-section
placed in a uniform stream of fluid, was first
investigated experimentally by a German
physicist H.G. Magnus in 1852. As such it is
commonly known as Magnus effect.
DEVELOPMENT OF LIFT ON A
CYLINDER
•Fromthisplotitcanbeseenthatto
produceagivenliftcoefficienttheactual
velocityrequiredisgreaterthantwicethat
requiredtheoretically.
•Furthermore,astheperipheralvelocityvc
increasestoaboutfourtimesthevelocity
offlowoffluidV,theliftcoefficientCL
approachesamaximumvalueofabout
9.0ascomparedwiththetheoretical
maximumvalueofabout12.6.
•Inadditiontothis,thedragcoefficientCD
alsovarieswithvelocityratio(vc/V)from
about1.0forsmallvelocityratiostoabout
5atavelocityratioequalto4.
•For(vc/V)≈1.0thevalueofthedrag
coefficientCDisminimumandafterwards
itincreasessteeplywithanincreaseinthe
valueof(vc/V).
Ifthecylinderisrelativelyshorti.e.,ithaslengthto
diameterratio(L/D)<10thenthereisconsiderable
effectofflowarounditsendswhichappreciably
reducestheliftcoefficient.Forexample,whenthe
ratio(L/D)=5,theliftcoefficientCLisabouthalfof
thatforalongercylinderhavingratio(L/D)>10.
DEVELOPMENT OF LIFT ON AN
AIRFOIL
•Symmetryofanairfoilis
generallycharacterizedbythe
chordlengthcandtheangle
ofattackα.
•Forasymmetricalairfoilthe
chordlinecoincideswithits
axisofsymmetry.
•Theoveralllengthofanairfoil
(inthedirectionperpendicular
tothecross-section)istermed
asitsspan.
•TheratioofspanLandchord
lengthcofanairfoil(i.e.,L/c)
isknownasaspectratio.
DEVELOPMENT OF LIFT ON AN
AIRFOIL
•Joukowskishowedthatthepatternof
flowroundacircularcylindercould
beusedtodeducetheflowpattern
aroundabodyofanyothershapeby
amathematicalprocesscalled
‘conformaltransformation.’
•AssuchitmaybenotedthatKutta-
Joukowskiequation,though
developedforacylinderofcircular
cross-section,isfoundtoholdgood
foracylinderhavingacross-section
ofanyshapeprovidedthereis
circulationaroundit.
•Fromthetheoreticalanalysisithas
beenfoundthatbyproperly
adjustingthecirculationitispossible
toobtaintheflowpatternsuchthat
thestreamlineatthetrailingendof
theairfoilistangentialtoit.
DEVELOPMENT OF LIFT ON AN
AIRFOIL
•ThecirculationΓrequiredtodo
thishasbeenfoundanalytically
asΓ=πcVsinα,wherecischord
length,Visuniformvelocityof
flowandαistheangleofattack.
•SotheliftFLontheairfoilofspan
LbecomesFL=ρVLΓ=ρVL(πcV
sinα)=πcLρV^2sinα.
•TheliftcoefficientCLmaybe
expressedasCL=2πsinα,where
Aistheareaoftheprojectionof
theairfoilonaplane
perpendiculartoitscross-section,
whichinthecaseofanairfoilof
spanLandchordlengthcisequal
to(cL).
DEVELOPMENT OF CIRCULATION
AROUND AN AIRFOIL
•Whenauniformstreamofrealfluidflowspastanairfoil,theninitiallythe
flowpatternissameasthatforanidealfluidflowingpastanairfoili.e.,an
irrotationalflowpatterndevelops.
•Whentheboundarylayerseparatesfromthelowersurfaceatthetrailing
edgeandontheuppersurfaceaflowisinducedfromthestagnationpoint
towardsthetrailingedge.Thisflowisintheoppositedirectiontothatof
theidealfluidwhichresultsintheformationofaneddycalledstarting
vortexontheuppersurfaceintheregionofthetrailingedge.
•Whenthestartingvortexleavestheairfoil,itgeneratesanequaland
oppositecirculationroundtheairfoil.Inthisway,thenetcirculationround
thecurveAremainszero.
•Nowinordertocounterbalancethecounterclockwisecirculationsofthe
startingvortex,aclockwisecirculationofthesamestrengthmustbeset
uparoundtheairfoil,sothatthesumofthecirculationaroundthecurveA
iszeroinaccordancewithThomson’stheorem.Theclockwisecirculation
aroundtheairfoilisusuallyknownasboundarycirculation.
DEVELOPMENT OF LIFT ON AN
AIRFOIL
•Aconstantcirculationaroundtheairfoilresultsin
settingupofaconstantliftontheairfoil.
•Furthermoreduetotheviscosity,forarealfluid
theactualliftexertedonanairfoilissomewhat
lessthanthatobtainedbyKutta—Joukowski
equation.
•Thedragandliftofanairfoilmayalsobe
expressedas
inwhichtheareaAisrepresentedbytheproduct
ofthelengthorspanLandthechordlengthcof
theairfoil.
DEVELOPMENT OF LIFT ON AN
AIRFOIL
•Theactualflowpatterndevelopedforthe
flowofrealfluidpastanairfoilisvery
muchsimilartothatforanirrotational
flowforsmallvaluesofangleα’.
•Withincreaseinthevalueofangleα’to
about10°theliftcoefficientattainsa
maximumvalueandforα’>10°thereis
decreaseinthevalueofliftcoefficient.
•Thereductionintheliftcoefficientwith
increaseintheangleofattackbeyondthe
stallingangleisduetotheseparationof
flowatsomepointontheuppersideof
theairfoil.
•Theconditioninwhichtheflowseparates
frompracticallythewholeoftheupper
surfaceoftheairfoilisknownasstall.
•Thedragcoefficientofanairfoilvaries
littlewiththeangleα’anditisonlyatthe
highervaluesoftheangleα’,sincethe
flowseparates,thedragcoefficientis
slightlyincreased.
Effect of Fluid Compressibility on the
Lift on an Airfoil
•Insubsoniccompressibleflowtheeffectoffluid
compressibilityistocauseanincreaseinthecoefficientof
liftCLatagivenangleofattackα.
•Insubsoniccompressibleflowpastthinsymmetricalairfoil
ofinfinitespanandsmallangleofattack,theliftcoefficient
isincreasedbyafactor(1–Ma^2)^(–1/2).
•Whenthefreestreamvelocityisincreasedfromasubsonic
tosupersonicrange,duetotheformationofshockwaves,
thereisadecreaseinthevalueofCLwiththeincreasein
thevalueofMa.
•Forsupersonicflowpastthinsymmetricalairfoilsof
infinitesspanandsmallangleofattacktheliftcoefficientis
decreasedbyafactor(Ma^2-1)^(–1/2).
Rayleigh Method
(used when the number of variables is less)
•Thefollowingtwomethodsofdimensionalanalysisaregenerally
used:
RayleighMethod:Inthismethodafunctionalrelationshipofsome
variablesisexpressedintheformofanexponentialequationwhich
mustbedimensionallyhomogeneous.
ThusifXissomefunctionofvariablesX1,X2,X3…Xn;thefunctional
equationcanbewrittenas
whichmaybeexpressedas
inwhichCisadimensionlessconstantwhichmaybedetermined
eitherfromthephysicalcharacteristicsoftheproblemorfrom
experimentalmeasurements.
Theexponentsa,b,c…,…narethenevaluatedonthebasisthatthe
equationisdimensionallyhomogeneous.Thedimensionless
parametersarethenformedbygroupingtogetherthevariables
withlikepowers.
Buckingham π-Method
(used when the number of variables is more)
•Buckinghamπ-Method:TheBuckingham’sπ-theorem
statesthatiftherearendimensionalvariablesinvolvedina
phenomenon,whichcanbecompletelydescribedbym
fundamentalquantitiesordimensions,andarerelatedbya
dimensionallyhomogeneousequation,thenthe
relationshipamongthenquantitiescanalwaysbe
expressedintermsofexactly(n–m)dimensionlessand
independentπterms.
Mathematically,ifanyvariableQ1dependsonthe
independentvariables,Q2,Q3,Q4………Qn;thefunctional
equationmaybewrittenas
whichcanbetransformedto whereCisa
dimensionlessconstant.
USE OF DIMENSIONAL ANALYSIS
Dimensional analysis is
extremely useful in reducing
the number of variables in a
problem by formulating the
variables involved in any
problem into non-dimensional
parameters.
The reduction of the number of
variables in a problem provides
a systematic scheme for
planning laboratory tests and
also permits the presentation of
experimental results in a more
concise and useful form.
DIMENSIONAL ANALYSIS OF DRAG
AND LIFT
Usually it is not possible to
predict the total drag on a
body merely by analytical
methods. As such in almost all
the cases the general practice
is to determine the total drag
on a body experimentally.
The planning of the
experiments and the analysis
of the results obtained from
the experiments may
conveniently be carried out in
terms of the dimensional
analysis of the problem.
Kinematic Similarity
•KinematicSimilarity:
Kinematicsimilarityexistsbetweenthemodelandtheprototypeif
thepathsofthehomologousmovingparticlesaregeometrically
similar,andiftheratiosofthevelocitiesaswellasaccelerationof
thehomologousparticlesareequal.Sucharatioisdefinedasscale
ratioe.g.timescaleratio,velocityscaleratio,accelerationscale
ratioanddischargescaleratioetc.
Kinematicsimilaritycanbeattainedifflownetsforthemodeland
theprototypearegeometricallysimilar,whichinturnmeansthatby
merechangeofscalethetwocanbesuperimposed.
•Dynamic Similarity:
Dynamic similarity exists between the model and the prototype
which are geometrically and kinematicallysimilar if the ratio of all
the forces acting at homologous points in the two flow systems of
the model and the prototype are equal.