Fluid mechanics notes for gate

mythsoumith1 6,704 views 54 slides Mar 07, 2018
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

Fluid mechanics notes for gate, IES


Slide Content

voddepalli soumith

FLUID MECHANICS

FLUID KINEMATICS ............................................................................................................................................................................................... 2
BUOYANCY & FLOATATION ............................................................................................................................................................................... 9
PRESSURE MEASUREMENT ............................................................................................................................................................................ 12
FLUID MECHANICS.............................................................................................................................................................................................. 15
FLUID DYNAMICS ................................................................................................................................................................................................ 22
LAMINAR FLOW ................................................................................................................................................................................................... 31
BOUNDARY LAYER THEORY ........................................................................................................................................................................... 35
HYDROSTATIC FORCES ..................................................................................................................................................................................... 46
DIMENSIONAL ANALYSIS ................................................................................................................................................................................. 50

FLUID KINEMATICS
Kinematics deal with motion of fluid without any reference to cause of motion i.e., force.
The fluid flow is analysed by using two techniques.
1. Langrangian technique
2. Eulerian technique

 In Langrangian technique, single fluid particle is taken and the behaviour of this particle is analysed at different
instances of time.
 In Eulerian technique, certain section is taken and fluid flow is analysed at that section.
Different types of fluid flow
Steady & Unsteady flow
A flow is said to be steady flow when fluid properties do not change at any cross section at any given time,
otherwise flow is unsteady.
��� ������ ����→[
��
��
]
�??????��� ����??????��
=0 & [
��
��
]
�??????��� ����??????��
=0
Uniform & non-uniform flow
A flow is said to be uniform when fluid properties especially velocity don’t change with space at any given instant
of time, otherwise the flow is non-uniform.
��� ������� ����→[
��
��(�,�,�)
]
�??????��� �??????��
=0 {�=�����(�,�,�)}
Laminar & Turbulent flow
In laminar flow fluid particles move in the form of layers, with one layer sliding over the other layer. Laminar flow
generally occurs at low velocities.
In turbulent flow, fluid particles move in highly disorganized manner, leading to rapid mixing of particles.
Turbulent flow generally occurs at high velocities.
Rotational & Irrotational flow
A flow is said to be rotational flow when fluid particles rotate about their own mass centres, otherwise the flow is
irrotational.
Rotation is possible when there is a tangential force, these tangential forces are associated with viscous fluids.
Therefore, real fluids are generally rotational fluids and ideal fluids are irrotational fluids.
Internal & External flows
When the fluid flows through confined passage (Ex- flow of fluid through pipes, ducts) then it is internal flow.
When the fluid flow through unconfined passage (Ex- Flow of fluid (air) over aircraft wing) then flow is external
flow.
Categorization of flow
1. One-dimensional flow
2. Two-dimensional flow
3. Three-dimensional flow
Flow can never be 1-D, because of viscosity.
Stream line
It is an imaginary line or curve drawn in space such that a tangent drawn to it at any point gives velocity vector.
Stream line gives direction of flow as there is no component of velocity in perpendicular direction there is no flow
across the stream line, there is flow only along the stream line. Stream line gives instantaneous snapshot of a flow
pattern. It has no time history. No two stream lines can intersect because velocity is unique at any given instant of
time at a particular time.

Equation of Stream line
In 3-D
�⃗=��̂+��̂+��̂
�=√�
2
+�
2
+�
2

In 2-D
�⃗=��̂+��̂
�=
��
��
⇒��=
��
�
& �=
��
��
⇒��=
��
�


��
�
=
��
�
→�������� �� ����� ���� �� 2−�
��
�
=
��
�
=
��
�
→�������� �� ����� ���� �� 3−�
Path line
It is the locus of single fluid particle at different instances of time. It follows
Langrangian approach. A path line can intersect with itself.


Streak line
It is the locus of different fluid particles through a fixed point.

Unsteady Flow
11:00―11:30  North to South
11:30―12:00 East to West
Steady Flow
11:00 ―12:00North to South
In a steady flow stream lines, streak lines & path lines are identical, whereas in unsteady flow they are different.
Stream lines intersect at stagnation point.
Conservation of mass (Continuity equation)
Generalized Continuity equation
�=�⋅�→ ���=���+���
Differentiating above equation and simplifying gives

Every fluid flow must satisfy mass conservation or continuity equation. If the fluid flow doesn’t
satisfy continuity equation, then that flow is not possible.
This equation is applicable for any type of fluid flow.
Case-A (Steady flow)
��� ������ ����→
��
��
=0
��,
�
��
(��)+
�
��
(��)+
�
��
(��)=�
Case-B (Incompressible flow)
��� �������������� ����→�=��������,
��
��
=0
0+
�
��
(��)+
�
��
(��)+
�
��
(��)=0 → �(
��
��
+
��
��
+
��
��
)=0
��
��
+
��
��
+
��
��
=�
This equation is applicable for any type of incompressible flow. (Steady or unsteady)
�ℎ� ���������� �������� ��� 2−� �������������� ���� ��
��
��
+
��
��
=�
Continuity equation for steady 1-Dimensional flow
Flow through pipes, nozzles & diffusers etc…
�=
����
������

����(�)=�������(�)
�̇=
�
�
=
��
�
=
�×(�×�)
�

�̇=�×�×�
��� ������ ���� →�
1=�
2
�
��
��
�=�
��
��
�
�� �ℎ� ���� �� ��������������→�
1=�
2
�� �ℎ� ���� �� ������ & ��������������,
�
��
�=�
��
� (�
1=�
2)
��
��
+
�
��
(��)+
�
��
(��)+
�
��
(��)=0

Discharge (Q)
Volume flow rate is known as discharge.
�=
������ ������� �ℎ����ℎ � �����������
����
=
��
�
→�=�×�⃗
In a steady 1-D incompressible flow, discharge remains constant.
Acceleration of a fluid particle
�=�(�,�,�,�),�=�(�,�,�,�),�=�(�,�,�,�)
�=
��⃗
��
=
��
��
�̂+
��
��
�̂+
��
��
�̂
�
�=
��
��
,�
�=
��
��
,�
�=
��
��

�
�=
��
��
=
��
��
×
��
��
+
��
��
×
��
��
+
��
��
×
��
��
+
��
��

�
�=
��
��
=
��
��
×
��
��
+
��
��
×
��
��
+
��
��
×
��
��
+
��
��

�
�=
��
��
=
��
��
×
��
��
+
��
��
×
��
��
+
��
��
×
��
��
+
��
��

Convective Acceleration
The acceleration due to change of velocity with space is known as convective acceleration. For uniform flow
convective acceleration is zero.
Temporal or Local Acceleration
The acceleration due to change of velocity with respective to time is known as temporal acceleration. For steady
flow temporal acceleration is zero.
Type of flow Convective Acceleration Temporal Acceleration
Steady & uniform 0 0
Steady & Non-uniform exists 0
Unsteady & uniform 0 exists
Unsteady & Non-uniform exists exists
Steady flow, 1-Dimensional & incompressible
��������=0
�
1�
1=�
2�
2⇒ �
�=�
�
Velocity is not changing w.r.t time.



�
1�
1=�
2�
2
�
2<&#3627408436;
1
&#3627408483;
2>&#3627408483;
1
`Stream lines are converging Convective acceleration

&#3627408436;
1&#3627408483;
1=&#3627408436;
2&#3627408483;
2
&#3627408436;
2>&#3627408436;
1
&#3627408483;
2<&#3627408483;
1
Stream lines are diverging deceleration

Rotational Components
&#3627408481;&#3627408462;&#3627408475;&#3627408465;&#3627409148;=
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
&#3627408465;&#3627408485;⋅&#3627408465;&#3627408481;
&#3627408465;&#3627408485;

&#3627408465;&#3627409148;=
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408481; (&#3627408465;&#3627409148;≈0→&#3627408481;&#3627408462;&#3627408475;&#3627408465;&#3627409148;≅&#3627408465;&#3627409148;)
&#3627408465;&#3627409148;
&#3627408465;&#3627408481;
=
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;


⟲→anti-clockwise (+
ve
rotation) ⟳→clockwise (-
ve
rotation)

&#3627408481;&#3627408462;&#3627408475;&#3627408465;&#3627409149;=
&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
&#3627408465;&#3627408485;⋅&#3627408465;&#3627408481;
&#3627408465;&#3627408486;
⇒ &#3627408465;&#3627409149;=
&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408481;

&#3627408465;&#3627409149;
&#3627408465;&#3627408481;
=−
&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
(⟳→&#3627408464;&#3627408473;&#3627408476;&#3627408464;&#3627408472;&#3627408484;&#3627408470;&#3627408480;&#3627408466; (−&#3627408483;&#3627408466; &#3627408479;&#3627408476;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;))





In fluid mechanics, angular velocity is defined as average angular
velocity of initially 2 perpendicular line segments.
&#3627409172;
&#3627408487;=
1
2
(
&#3627408465;&#3627409148;
&#3627408465;&#3627408481;
+
&#3627408465;&#3627409149;
&#3627408465;&#3627408481;
)=
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;

&#3627409172;=&#3627409172;
&#3627408485;&#3627408470;̂+&#3627409172;
&#3627408486;&#3627408471;̂+&#3627409172;
&#3627408487;&#3627408472;̂
&#3627409172;=|
&#3627408470;̂&#3627408471;̂&#3627408472;̂
&#3627409173;
&#3627409173;&#3627408485;
&#3627409173;
&#3627409173;&#3627408486;
&#3627409173;
&#3627409173;&#3627408487;
&#3627408482;&#3627408483;&#3627408484;
|
&#3627409172;
&#3627408485;=
1
2
(
&#3627409173;&#3627408484;
&#3627409173;&#3627408486;

&#3627409173;&#3627408483;
&#3627409173;&#3627408487;
) &#3627409172;
&#3627408486;=
1
2
(
&#3627409173;&#3627408482;
&#3627409173;&#3627408487;

&#3627409173;&#3627408484;
&#3627409173;&#3627408485;
) &#3627409172;
&#3627408487;=
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;

Condition for irrotational flow
&#3627409172;=&#3627409172;
&#3627408485;&#3627408470;̂+&#3627409172;
&#3627408486;&#3627408471;̂+&#3627409172;
&#3627408487;&#3627408472;̂
For irrotational flow,
&#3627409172;=0→&#3627409172;
&#3627408485;=&#3627409172;
&#3627408486;=&#3627409172;
&#3627408487;=0
&#3627409172;
&#3627408487;=0→
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
=0⇒
&#3627409231;&#3627408535;
&#3627409231;&#3627408537;
=
&#3627409231;&#3627408534;
&#3627409231;&#3627408538;

Vorticity
Twice the rotation (2ω) is known as vorticity.
&#3627408509;&#3627408528;&#3627408531;&#3627408533;&#3627408522;&#3627408516;&#3627408522;&#3627408533;&#3627408538;=&#3627409360;&#3627409230;=|
&#3627408470;̂&#3627408471;̂&#3627408472;̂
&#3627409173;
&#3627409173;&#3627408485;
&#3627409173;
&#3627409173;&#3627408486;
&#3627409173;
&#3627409173;&#3627408487;
&#3627408482;&#3627408483;&#3627408484;
|
For irrotational flow, vorticity is zero.

Circulation (Γ)
It is the line integral of tangential component of velocity taken
around a closed curve.
&#3627409124;=&#3627408482;⋅&#3627408465;&#3627408485;+(&#3627408483;+
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
&#3627408465;&#3627408485;)⋅&#3627408465;&#3627408486;−(&#3627408482;+
&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
&#3627408465;&#3627408486;)⋅&#3627408465;&#3627408485;−&#3627408483;⋅&#3627408465;&#3627408486;
&#3627409124;=(
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
)&#3627408465;&#3627408485;⋅&#3627408465;&#3627408486;
[&#3627408436;&#3627408479;&#3627408466;&#3627408462;=&#3627408465;&#3627408485;⋅&#3627408465;&#3627408486;]
&#3627408438;&#3627408470;&#3627408479;&#3627408464;&#3627408482;&#3627408473;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (&#3627409124;)=&#3627408457;&#3627408476;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408470;&#3627408481;&#3627408486; (2&#3627409172;
&#3627408487;)×&#3627408436;&#3627408479;&#3627408466;&#3627408462;
In case of irrotational flow, vorticity is zero & circulation is zero.



Velocity Potential function (ϕ)
It is a function of space & time defined in such a manner, that its negative derivative w.r.t space gives velocity in
that direction. The negative sign is taken as the flow is in the direction of decreasing potential.

&#3627409173;??????
&#3627409173;&#3627408485;
=&#3627408482;−
&#3627409173;??????
&#3627409173;&#3627408486;
=&#3627408483;−
&#3627409173;??????
&#3627409173;&#3627408487;
=&#3627408484;
Velocity potential function can be defined for 2-Dimensional flow
&#3627409173;&#3627408482;
&#3627409173;&#3627408485;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
=
&#3627409173;
&#3627409173;&#3627408485;
(−
&#3627409173;??????
&#3627409173;&#3627408485;
)+
&#3627409173;
&#3627409173;&#3627408486;
(−
&#3627409173;??????
&#3627409173;&#3627408486;
)=−(
&#3627409173;
2
??????
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
??????
&#3627409173;&#3627408486;
2
)
Case 1
&#3627408444;&#3627408467;
&#3627409173;
2
??????
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
??????
&#3627409173;&#3627408486;
2
=0,?????? &#3627408532;&#3627408514;&#3627408533;&#3627408522;&#3627408532;&#3627408519;&#3627408522;&#3627408518;&#3627408532; &#3627408499;&#3627408514;&#3627408529;&#3627408525;&#3627408514;&#3627408516;&#3627408518; &#3627408518;&#3627408530;&#3627408534;&#3627408514;&#3627408533;&#3627408522;&#3627408528;&#3627408527; &#3627408462;&#3627408480; (
&#3627409173;&#3627408482;
&#3627409173;&#3627408485;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
=0)
→ Continuity equation is satisfied and flow is possible.
Case 2
&#3627408444;&#3627408467;
&#3627409173;
2
??????
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
??????
&#3627409173;&#3627408486;
2
≠0,?????? &#3627408517;&#3627408528;&#3627408518;&#3627408532;&#3627408527;

&#3627408533; &#3627408532;&#3627408514;&#3627408533;&#3627408522;&#3627408532;&#3627408519;&#3627408522;&#3627408518;&#3627408532; &#3627408499;&#3627408514;&#3627408529;&#3627408525;&#3627408514;&#3627408516;&#3627408518; &#3627408518;&#3627408530;&#3627408534;&#3627408514;&#3627408533;&#3627408522;&#3627408528;&#3627408527; &#3627408462;&#3627408480; (
&#3627409173;&#3627408482;
&#3627409173;&#3627408485;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;
≠0)
→ Continuity equation is not satisfied and flow is not possible.
Case 3
&#3627409172;
&#3627408487;=
1
2
(
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
)=
1
2
(−
&#3627409173;
2
??????
&#3627409173;&#3627408485;⋅&#3627409173;&#3627408486;
+
&#3627409173;
2
??????
&#3627409173;&#3627408486;⋅&#3627409173;&#3627408485;
)
&#3627409172;
&#3627408487;=0→&#3627408444;&#3627408479;&#3627408479;&#3627408476;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;&#3627408462;&#3627408473; &#3627408467;&#3627408473;&#3627408476;&#3627408484;
Velocity Potential function exits only for Irrotational flow i.e., the existence of velocity potential function
implies the flow is irrotational. Sometimes irrotational flow are also known as Potential flow.

Stream function (Ψ)
It is a function of space & time defined in such a manner that it satisfies continuity equation.
&#3627408482;=−
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
&#3627408483;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;

Note Though velocity potential function can be defined for 3-Dimensional flows, it is difficult to define stream
function in 3-Dimensional flows. Therefore, stream functions are generally defined for 2-D flows.
&#3627409172;
&#3627408487;=
1
2
(
&#3627409173;&#3627408483;
&#3627409173;&#3627408485;

&#3627409173;&#3627408482;
&#3627409173;&#3627408486;
)=
1
2
(
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408486;
2
)
Case 1
&#3627408444;&#3627408467; &#3627409171; &#3627408480;&#3627408462;&#3627408481;&#3627408470;&#3627408480;&#3627408467;&#3627408470;&#3627408466;&#3627408480; &#3627408447;&#3627408462;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (
&#3627409173;&#3627408482;
&#3627409173;&#3627408485;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408486;
=0) &
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408486;
2
=0 ⇒&#3627409172;
&#3627408487;=0→&#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; &#3627408470;&#3627408479;&#3627408479;&#3627408476;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;&#3627408462;&#3627408473;
Case 2
&#3627408444;&#3627408467; &#3627409171; &#3627408465;&#3627408476;&#3627408466;&#3627408480;&#3627408475;

&#3627408481; &#3627408480;&#3627408462;&#3627408481;&#3627408470;&#3627408480;&#3627408467;&#3627408470;&#3627408466;&#3627408480; &#3627408447;&#3627408462;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (
&#3627409173;&#3627408482;
&#3627409173;&#3627408485;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408486;
≠0)&
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408485;
2
+
&#3627409173;
2
&#3627409171;
&#3627409173;&#3627408486;
2
≠0 ⇒&#3627409172;
&#3627408487;≠0→&#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; &#3627408479;&#3627408476;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;&#3627408462;&#3627408473;
Velocity potential function exists only for rotational flow whereas stream function exists for both rotational &
irrotational flow.
If stream function satisfies Laplace equation, then flow is irrotational.
Significance of Stream Function
&#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408476;&#3627408467; &#3627408462; &#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408473;&#3627408470;&#3627408475;&#3627408466;→
&#3627408465;&#3627408485;
&#3627408482;
=
&#3627408465;&#3627408486;
&#3627408483;
→&#3627408483;⋅&#3627408465;&#3627408485;=&#3627408482;⋅&#3627408465;&#3627408486;⇒&#3627408483;⋅&#3627408465;&#3627408485;−&#3627408482;⋅&#3627408465;&#3627408486;=0
&#3627408482;=−
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
&#3627408483;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;

Substituting we get,
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;−(−
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
)⋅&#3627408465;&#3627408486;=0⇒
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;+
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486;=0→① →&#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408476;&#3627408467; &#3627408462; &#3627408477;&#3627408462;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408482;&#3627408473;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408473;&#3627408470;&#3627408475;&#3627408466;
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;+
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486;=??????&#3627409229;=&#3627408465;&#3627409171;=0
&#3627408436;&#3627408480; &#3627408517;&#3627409229;=0→ &#3627409229;=&#3627408490;&#3627408528;&#3627408527;&#3627408532;&#3627408533;&#3627408514;&#3627408527;&#3627408533;
For a particular stream line, Stream function remains constant.
&#3627408452;=&#3627408436;⋅&#3627408483;=(&#3627408465;&#3627408485;⋅1)⋅&#3627408483;=&#3627408483;⋅&#3627408465;&#3627408485;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;
&#3627408452;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485; ①
&#3627408465;&#3627409171;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;+
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486; (&#3627408465;&#3627408486;=0)
&#3627408465;&#3627409171;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485; ②
&#3627408436;&#3627408480; ①=②,
&#3627408504;=&#3627408517;&#3627409229; (&#3627408439;&#3627408470;&#3627408467;&#3627408467;&#3627408466;&#3627408479;&#3627408466;&#3627408475;&#3627408464;&#3627408466; &#3627408470;&#3627408475; &#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408467;&#3627408482;&#3627408475;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475;)
The difference in stream function gives discharge per unit width.
Relationship between Equipotential lines & Constant Stream Function lines
??????(&#3627408485;,&#3627408486;)=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;→&#3627408440;&#3627408478;&#3627408482;&#3627408470;&#3627408477;&#3627408476;&#3627408481;&#3627408466;&#3627408475;&#3627408481;&#3627408470;&#3627408462;&#3627408473; &#3627408473;&#3627408470;&#3627408475;&#3627408466;&#3627408480; (&#3627408465;&#3627408470;&#3627408467;&#3627408467;&#3627408466;&#3627408479;&#3627408466;&#3627408475;&#3627408481; &#3627408473;&#3627408470;&#3627408475;&#3627408466;&#3627408480; ℎ&#3627408462;&#3627408483;&#3627408466; &#3627408465;&#3627408470;&#3627408467;&#3627408467;&#3627408466;&#3627408479;&#3627408466;&#3627408475;&#3627408481; &#3627408477;&#3627408476;&#3627408481;&#3627408466;&#3627408475;&#3627408481;&#3627408470;&#3627408462;&#3627408473;)
&#3627408465;??????=
&#3627409173;??????
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;+
&#3627409173;??????
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486;=0⇒
&#3627409173;??????
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;=−
&#3627409173;??????
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486;⇒−&#3627408482;⋅&#3627408465;&#3627408485;=&#3627408483;⋅&#3627408465;&#3627408486; (&#3627408482;=−
&#3627409173;??????
&#3627409173;&#3627408485;
&#3627408483;=−
&#3627409173;??????
&#3627409173;&#3627408486;
)
(&#3627408454;&#3627408473;&#3627408476;&#3627408477;&#3627408466; &#3627408476;&#3627408467; &#3627408440;&#3627408478;&#3627408482;&#3627408470;&#3627408477;&#3627408476;&#3627408481;&#3627408466;&#3627408475;&#3627408481;&#3627408470;&#3627408462;&#3627408473; &#3627408473;&#3627408470;&#3627408475;&#3627408466;)
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=−
&#3627408482;
&#3627408483;
=
&#3627409173;??????
&#3627409173;&#3627408485;

&#3627409173;??????
&#3627409173;&#3627408486;

&#3627408465;&#3627409171;=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;+
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486;=0⇒
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;
⋅&#3627408465;&#3627408485;=−
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
⋅&#3627408465;&#3627408486; ⇒&#3627408483;⋅&#3627408465;&#3627408485;=&#3627408482;⋅&#3627408465;&#3627408486;
(&#3627408454;&#3627408473;&#3627408476;&#3627408477;&#3627408466; &#3627408476;&#3627408467; &#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408467;&#3627408482;&#3627408475;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408473;&#3627408470;&#3627408475;&#3627408466;&#3627408480;)
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=
&#3627408483;
&#3627408482;

&#3627408454;&#3627408473;&#3627408476;&#3627408477;&#3627408466; &#3627408476;&#3627408467; &#3627408440;&#3627408478;&#3627408482;&#3627408470;&#3627408477;&#3627408476;&#3627408481;&#3627408466;&#3627408475;&#3627408481;&#3627408470;&#3627408462;&#3627408473; &#3627408473;&#3627408470;&#3627408475;&#3627408466; ×&#3627408454;&#3627408473;&#3627408476;&#3627408477;&#3627408466; &#3627408476;&#3627408467; &#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408467;&#3627408482;&#3627408475;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408473;&#3627408470;&#3627408475;&#3627408466;=−
&#3627408482;
&#3627408483;
×
&#3627408483;
&#3627408482;
=−1
Equipotential lines & Constant Stream function lines are perpendicular to
each other.
Cauchy―Reimann Equations
&#3627408482;=−
&#3627409173;??????
&#3627409173;&#3627408485;
=−
&#3627409173;&#3627409171;
&#3627409173;&#3627408486;
& &#3627408483;=−
&#3627409173;??????
&#3627409173;&#3627408486;
=
&#3627409173;&#3627409171;
&#3627409173;&#3627408485;

&#3627409231;??????
&#3627409231;&#3627408537;
=
&#3627409231;&#3627409229;
&#3627409231;&#3627408538;
& −
&#3627409231;??????
&#3627409231;&#3627408538;
=
&#3627409231;&#3627409229;
&#3627409231;&#3627408537;

BUOYANCY & FLOATATION
Archimedes principle
When a body is submerged either partially or completely, the net vertical upward force exerted by the fluid on the
body is known as buoyancy force (Fb), this buoyancy force is equal to weight of the fluid displaced and this is
known as Archimedes principle.
&#3627408457;
&#3627408467;&#3627408473;&#3627408482;??????&#3627408465; &#3627408465;??????&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465;=&#3627408457;
&#3627408467;&#3627408465;=&#3627408457;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408463;&#3627408476;&#3627408465;&#3627408486; &#3627408480;&#3627408482;&#3627408463;&#3627408474;&#3627408466;&#3627408479;&#3627408468;&#3627408466;&#3627408465;=&#3627408436;(&#3627408485;
2−&#3627408485;
1)
(&#3627408449;&#3627408466;&#3627408481; &#3627408483;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408482;&#3627408477;&#3627408484;&#3627408462;&#3627408479;&#3627408465; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466; &#3627408466;&#3627408485;&#3627408466;&#3627408479;&#3627408481;&#3627408466;&#3627408465; &#3627408463;&#3627408486; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408463;&#3627408476;&#3627408465;&#3627408486;) ??????
&#3627408535;⋅&#3627408501;&#3627408518;&#3627408533;
=&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408465;&#3627408470;&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465;
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408465;&#3627408470;&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465; =&#3627409164;
&#3627408467;⋅&#3627408468;⋅(&#3627408485;
2−&#3627408485;
1)⋅&#3627408436;=&#3627409164;
&#3627408467;⋅&#3627408468;⋅&#3627408457;
&#3627408467;&#3627408465;
??????
&#3627408535;⋅&#3627408501;&#3627408518;&#3627408533;=??????
&#3627408515;&#3627408534;&#3627408528;&#3627408534;&#3627408514;&#3627408527;&#3627408516;&#3627408538;=&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408465;&#3627408470;&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465;=&#3627409164;
&#3627408467;⋅&#3627408468;⋅&#3627408457;
&#3627408467;&#3627408465;
Centre of Buoyancy (B)
It is the point which the Buoyancy force is supposed to be acting, and this buoyancy
force will act at the centroid of the displacement volume. Therefore, centre of buoyancy will lie at the centroid of
displaced volume.
Note
 When a homogenous body is completely submerged, then the centre of gravity of body & centre of
buoyancy coincide.
 For a floating homogenous body, centre of buoyancy is below the centre of gravity.
 For a non-homogenous body (heterogenous), centre of buoyancy and centre of gravity may not coincide
even if it’s completely submerged.
Principle of Flotation
For a floating body to be in equilibrium, Weight of the body must be EQUAL to Weight of fluid displaced and the
line of action of these 2 forces must be same.
&#3627408458;
&#3627408463;&#3627408476;&#3627408465;&#3627408486;=&#3627408441;
&#3627408463;→ &#3627408441;
&#3627408463;=&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408465;&#3627408470;&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465;=&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408463;&#3627408476;&#3627408465;&#3627408486;
&#3627408458;
&#3627408463;&#3627408476;&#3627408465;&#3627408486;=&#3627408458;
&#3627408467;&#3627408473;&#3627408482;??????&#3627408465; &#3627408465;??????&#3627408480;&#3627408477;&#3627408473;&#3627408462;&#3627408464;&#3627408466;&#3627408465;→ &#3627408463;&#3627408476;&#3627408465;&#3627408486; &#3627408470;&#3627408480; &#3627408470;&#3627408475; &#3627408466;&#3627408478;&#3627408482;&#3627408473;&#3627408470;&#3627408463;&#3627408479;&#3627408470;&#3627408482;&#3627408474;
Types of Equilibrium

Stability conditions for completely submerged bodies
A completely submerged body will be in stable
equilibrium, when the centre of buoyancy is above centre
of gravity.
A completely submerged body will be in unstable
equilibrium when the centre of buoyancy is below centre
of gravity.
A completely submerged body will be in neutral
equilibrium, when centre of buoyancy coincides with
centre of gravity.


Metacentre (M)
It’s the point of intersection normal axis of the body to the new line of action of buoyancy force when the body is
tilted.
Metacentric height
The distance between centre of gravity and Metacentre (M) measured along the normal axis is called as
Metacentric height.
For stable equilibrium Metacentric height is positive, unstable negative.

Stability conditions for partially submerged/floating bodies
A floating body will be in stable
equilibrium, when metacentre is above
centre of gravity.
A floating body is said to be in unstable
equilibrium when the meta centre is
below centre of gravity.
A floating body is said to be in neutral
equilibrium when the meta centre
coincides with centre of gravity.


Mathematical condition for Stable equilibrium

For more stable equilibrium conditions, BM or GM must be as large as possible.

&#3627408444;
&#3627408473;&#3627408473;=
&#3627408473;&#3627408463;
3
12
&#3627408444;
&#3627408481;&#3627408481;=
&#3627408463;&#3627408473;
3
12


&#3627408473;>&#3627408463;→&#3627408444;
&#3627408481;&#3627408481;>&#3627408444;
&#3627408473;&#3627408473;



&#3627408437;&#3627408448;=
&#3627408444;
&#3627408457;
&#3627408467;⋅&#3627408465;
&#3627408437;&#3627408448;
&#3627408473;−&#3627408473;=
&#3627408444;
&#3627408473;&#3627408473;
&#3627408457;
&#3627408467;⋅&#3627408465;
&#3627408437;&#3627408448;
&#3627408481;−&#3627408481;=
&#3627408444;
&#3627408481;&#3627408481;
&#3627408457;
&#3627408467;⋅&#3627408465;

&#3627408489;&#3627408500;
&#3627408525;−&#3627408525;<&#3627408489;&#3627408500;
&#3627408533;−&#3627408533; (&#3627408444;
&#3627408481;&#3627408481;>&#3627408444;
&#3627408473;&#3627408473;)
From design point of view the least BM is calculated, i.e., BM about longitudinal axis is calculated. As BMt-t>BMl-l
the body will be more stable when ot oscillates about transverse axis (t-t) than longitudinal axis (l-l).
Oscillation about longitudinal axis are known as Rolling and
transverse axis is known as Pitching.
&#3627408437;&#3627408448;
&#3627408479;&#3627408476;&#3627408473;&#3627408473;??????&#3627408475;&#3627408468;<&#3627408437;&#3627408448;
&#3627408477;??????&#3627408481;&#3627408464;ℎ??????&#3627408475;&#3627408468;
If rolling is taken care of, then pitching is already taken care of.

Time period of Oscillation
&#3627408455;=2&#3627409163;√
&#3627408472;
&#3627408468;
2
&#3627408468;(&#3627408442;&#3627408448;)
(&#3627408472;
&#3627408468;=&#3627408453;&#3627408462;&#3627408465;&#3627408470;&#3627408482;&#3627408480; &#3627408476;&#3627408467; &#3627408468;&#3627408486;&#3627408479;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;=√
&#3627408444;
&#3627408436;
)
For more stable equilibrium conditions, metacentric height must be larger, but larger GM results in smaller time
period of oscillation i.e., more number of oscillations in a given time. Therfore passengers are not comfortable
under such conditions. Therefore, for passenger ships, metacentric height is not very high. In case of war ships
stability of ship is more important than comfort, so metacentric height is larger than passenger ships.
Weight lost due to Buoyancy
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408473;&#3627408476;&#3627408480;&#3627408480;=&#3627408455;−&#3627408455;
1=&#3627408458;−(&#3627408458;−&#3627408441;
&#3627408463;)=&#3627408441;
&#3627408463;
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408473;&#3627408476;&#3627408480;&#3627408480;=&#3627408437;&#3627408482;&#3627408476;&#3627408486;&#3627408462;&#3627408475;&#3627408464;&#3627408486; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466;
As density of air is very small, the buoyancy effects are negligible in air.
Therefore, correct weight of body is obtained when it is submerged in air.

PRESSURE MEASUREMENT
Pressure
It is defined as external normal force exerted in unit area. The area can be real or imaginary.
The unit of pressure is Newton (N)/mm
2
.
Pressure is a representative of no. of collisions per second.
Mohr’s circle for a Static fluid
For a static fluid there is no shear stress and there are only normal forces
(pressure). Therefore, Mohr’s circle is a point as shown in figure.


Pascals Law
According to Pascal’s Law, pressure at any point in a static fluid is equal in all directions. Conversely if pressure is
applied in a static fluid it is transmitted equally in all directions.
Applications― Hydraulic Lift, Hydraulic brakes etc…


&#3627408441;
&#3627408462;
=
&#3627408458;
&#3627408436;

&#3627408436;
&#3627408462;
=
&#3627408458;
&#3627408441;
>1
&#3627408510;>?????? &#3627408462;&#3627408480; &#3627408436;>&#3627408462;


As W>F, by applying small force large weights can be raised. This doesn’t
mean energy conservation is violated because smaller force moves
through larger distance and larger force moves through smaller distance.
Atmospheric Pressure
Pressure exerted by environmental mass is known as atmospheric pressure. It is around 1.013 bar.
Gauge Atmospheric pressure (Pguage)
The pressure measured w.r.t atmospheric pressure is known as Gauge Pressure.
Absolute Pressure
The pressure measured w.r.t zero pressure is known as absolute pressure.
Vacuum Pressure
The pressure less than atmospheric pressure is known as vacuum pressure. There can be positive gauge or
negative gauge pressure, but there can’t be negative absolute pressure.
&#3627408457;&#3627408462;&#3627408464;&#3627408482;&#3627408482;&#3627408474; &#3627408451;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466;= &#3627408451;
&#3627408462;&#3627408481;&#3627408474;−&#3627408451;
&#3627408462;&#3627408463;&#3627408480;&#3627408476;&#3627408473;&#3627408482;&#3627408481;&#3627408466;

Hydrostatic Law
&#3627408451;⋅&#3627408465;&#3627408436;+&#3627409164;&#3627408468;⋅&#3627408465;&#3627408436;⋅&#3627408465;ℎ=(&#3627408451;+&#3627408465;&#3627408451;)⋅&#3627408465;&#3627408436;
&#3627408451;+&#3627409164;&#3627408468;⋅&#3627408465;ℎ=&#3627408451;+&#3627408465;&#3627408451;
&#3627408465;&#3627408451;
&#3627408465;ℎ
=&#3627409164;&#3627408468;→&#3627408443;&#3627408486;&#3627408465;&#3627408479;&#3627408476;&#3627408480;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408464; &#3627408447;&#3627408462;&#3627408484;
Hydrostatic Law gives variation of pressure in the vertical direction. For a static fluid, the forces acting on liquid
element are pressure & gravity forces.
&#3627408444;&#3627408467; &#3627408451;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466; &#3627408470;&#3627408480; &#3627408481;&#3627408462;&#3627408472;&#3627408466;&#3627408475; &#3627408470;&#3627408475; &#3627408482;&#3627408477;&#3627408484;&#3627408462;&#3627408479;&#3627408465; &#3627408465;&#3627408470;&#3627408479;&#3627408466;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475;,&#3627408477;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466; &#3627408465;&#3627408466;&#3627408464;&#3627408479;&#3627408466;&#3627408462;&#3627408480;&#3627408466;&#3627408480; &#3627408484;&#3627408470;&#3627408481;ℎ ℎ&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;,
&#3627408465;&#3627408451;
&#3627408465;ℎ
=−&#3627408484;=−&#3627409164;&#3627408468;
Pressure at any depth h
&#3627408436;&#3627408481; &#3627408467;&#3627408479;&#3627408466;&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; (ℎ=0)&#3627408451;=&#3627408451;
&#3627408462;&#3627408481;&#3627408474;
&#3627408465;&#3627408451;
&#3627408465;ℎ
=&#3627408484;→ &#3627408465;&#3627408451;=&#3627408484;⋅&#3627408465;ℎ→&#3627408451;=&#3627408484;⋅ℎ+&#3627408464;
&#3627408451;=&#3627408484;⋅ℎ+&#3627408451;
&#3627408462;&#3627408481;&#3627408474; (ℎ=0→&#3627408451;=&#3627408451;
&#3627408462;&#3627408481;&#3627408474;)
&#3627408503;
&#3627408520;&#3627408514;&#3627408534;&#3627408520;&#3627408518;=&#3627408536;⋅&#3627408521;=&#3627409222;&#3627408520;&#3627408521; (&#3627408451;
&#3627408462;&#3627408481;&#3627408474;=0 &#3627408467;&#3627408476;&#3627408479; &#3627408468;&#3627408462;&#3627408482;&#3627408468;&#3627408466; &#3627408477;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466;)
&#3627408451;=&#3627409164;&#3627408468;ℎ &#3627408470;&#3627408480; &#3627408463;&#3627408462;&#3627408480;&#3627408466;&#3627408465; &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408462;&#3627408480;&#3627408480;&#3627408482;&#3627408474;&#3627408477;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408481;ℎ&#3627408462;&#3627408481; &#3627408481;ℎ&#3627408466; &#3627408465;&#3627408466;&#3627408475;&#3627408480;&#3627408470;&#3627408481;&#3627408486;(&#3627409164;)&#3627408470;&#3627408480; &#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
Sometimes the pressure is expressed in height column (h) because ρ & g are almost constants and pressure vary
directly with height column.
Barometer
Barometer is used for measuring Atmospheric pressure.
&#3627408451;
&#3627408462;&#3627408481;&#3627408474;=0+&#3627409164;&#3627408468;ℎ⇒ &#3627408451;
&#3627408462;&#3627408481;&#3627408474;=&#3627409164;&#3627408468;ℎ
h calculated is found to be 0.76m.
&#3627408451;
&#3627408462;&#3627408481;&#3627408474;=&#3627409164;&#3627408468;ℎ=13.6×9.81×0.76=1.01325×10
5
&#3627408449;
&#3627408474;&#3627408474;
2
=1.01325 &#3627408463;&#3627408462;&#3627408479;
If water is used instead of mercury, the corresponding height will be 10.3 metres. Mercury is used because of its
high density.
Conversion of one fluid column into other fluid column

&#3627408451;
1=&#3627408451;
2⇒ &#3627409164;
1⋅&#3627408468;⋅ℎ
1=&#3627409164;
2⋅&#3627408468;⋅ℎ
2 ⇒ &#3627409222;
&#3627409359;⋅&#3627408521;
&#3627409359;=&#3627409222;
&#3627409360;⋅&#3627408521;
&#3627409360;
Assume both are liquids
&#3627409164;
1ℎ
1
&#3627409164;
&#3627408443;2&#3627408450;
=
&#3627409164;
2ℎ
2
&#3627409164;
&#3627408443;2&#3627408450;
⇒&#3627408532;
&#3627409359;⋅&#3627408521;
&#3627409359;=&#3627408532;
&#3627409360;⋅&#3627408521;
&#3627409360;
If both are gases
&#3627409164;
1ℎ
1
&#3627409164;
&#3627408462;??????&#3627408479;
=
&#3627409164;
2ℎ
2
&#3627409164;
&#3627408462;??????&#3627408479;
⇒&#3627408532;
&#3627409359;⋅&#3627408521;
&#3627409359;=&#3627408532;
&#3627409360;⋅&#3627408521;
&#3627409360;

2=
&#3627408480;
1
&#3627408480;
2
⋅ℎ
1

Piezometers
It is a device which is open at both the ends with one end connected at a point where pressure
is to be calculated and another end is open to atmosphere.
&#3627408451;
&#3627408468;&#3627408462;&#3627408482;&#3627408468;&#3627408466;=&#3627409164;&#3627408468;ℎ
Piezometers are not suitable for measuring high pressures like gas at high pressures. They are
suitable for moderate liquid pressures

Manometer
They are used for measuring pressure, they are based on balancing of liquid column.
They are divided into 2 types
1. Simple U-Tube (Pressure at a point)
2. Differential (Measure Pressure differences)
Simple U-tube Manometer

Jumping of fluid technique
&#3627408451;+&#3627409164;&#3627408468;&#3627408486;−&#3627409164;
&#3627408443;&#3627408468;&#3627408468;&#3627408485;−&#3627408451;
&#3627408462;&#3627408481;&#3627408474;=0
&#3627408451;
&#3627408468;&#3627408462;&#3627408482;&#3627408468;&#3627408466;=&#3627409164;
&#3627408443;&#3627408468;&#3627408468;&#3627408485;−&#3627409164;&#3627408468;&#3627408486;
Datum line technique
&#3627408451;
&#3627408436;=&#3627408451;
&#3627408437;
&#3627408451;
&#3627408436;=&#3627408451;+&#3627409164;&#3627408468;&#3627408486; &#3627408451;
&#3627408437;=&#3627409164;
&#3627408443;&#3627408468;&#3627408468;&#3627408485;
&#3627408451;+&#3627409164;&#3627408468;&#3627408486;=&#3627409164;
&#3627408443;&#3627408468;&#3627408468;&#3627408485;
&#3627408451;=&#3627409164;
&#3627408443;&#3627408468;&#3627408468;&#3627408485;−&#3627409164;&#3627408468;&#3627408486;
Multi U-tube manometers are used for measuring High Pressures

FLUID MECHANICS
Fluid
Fluid is a substance which is capable of moving or deforming under the action of shear force.
As long as there is shear force, the fluid flows or deforms continuously.
Examples- Liquids, Gases etc…




Difference between Solids & Fluids
In case of solids under the action of shear force, there is deformation and this deformation doesn’t change with
time. Therefore, deformation dθ is important when this shear force is removed, solids will try to come back to its
original position.
In case of fluids, the deformation is continuous as long as there is shear force, this deformation changes with time.
In fluids the rate if deformation (dθ/dt) is important than dθ. After the removal of shear force the fluid will never
try to come back to its original position. For a static fluid shear force is zero.
Fluid Properties
Density
It is defined as ratio of mass of fluid to its volume. It actually represents the quantity of matter in a given volume.
Its unit is Kg/m
3
.
Density of water for all calculation purposes is taken as 1000 Kg/m
3
.
Density depends on temperature and Pressure. As temperature increases density decreases and as pressure
increases density increases.
Specific Weight/ Weight density (w)
It is defined as the ratio of weight of the fluid to its volume. Its unit is N/mm
3
.
&#3627408484;=
&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465;
&#3627408483;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466;
=
&#3627408474;&#3627408468;
&#3627408457;
=&#3627409164;&#3627408468;
&#3627408484;=&#3627409164;&#3627408468;
Density is an absolute quantity, whereas specific weight is not an absolute quantity, because it varies from
location to location.
Specific gravity
It is defined as the ratio of density of fluid to density of standard fluid.
In case of liquids the standard fluid is water.
In case if gases the standard fluid is either Hydrogen or air at a given temperature and pressure.
Specific gravity of water is one. If the specific gravity of a liquid is less than one it is lighter than water, if greater
than one liquid is heavier than water.
Relative density
It is the ratio of density of one fluid to other fluid.
All Specific gravities are relative densities, but not all relative densities are not specific gravities.
Compressibility (β)
It is the measure of the change of volume (or) change of density w.r.t pressure on a given mass of fluid.
Mathematically it is defined as reciprocal of Bulk Modulus (K)
&#3627409149;=
1
&#3627408446;

&#3627408446;=
&#3627408465;&#3627408451;
−&#3627408465;&#3627408457;
&#3627408457;
=−&#3627408457;⋅
&#3627408465;&#3627408451;
&#3627408465;&#3627408457;
=&#3627409164;⋅
&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
(
−&#3627408465;&#3627408457;
&#3627408457;
=
&#3627409164;
&#3627408465;&#3627409164;
) → &#3627408446;=
&#3627409164;⋅&#3627408465;&#3627408451;
&#3627408465;&#3627409164;

&#3627409149;=
&#3627408465;&#3627409164;
&#3627409164;⋅&#3627408465;&#3627408451;

Liquids are generally treated as incompressible and gases as compressible.
Isothermal compressibility of Ideal gas
&#3627408451;=&#3627409164;⋅&#3627408453;⋅&#3627408455; (&#3627408455;=&#3627408438;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;)
&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
=&#3627408453;&#3627408455;
&#3627408446;
??????(&#3627408455;−&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;.)=
&#3627409164;⋅&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
=&#3627409164;⋅
&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
=&#3627409164;⋅&#3627408453;⋅&#3627408455;=&#3627408451;
&#3627408498;
&#3627408507;=&#3627408503;
Adiabatic Bulk Modulus/ Isentropic Bulk Modulus of an Ideal gas
&#3627408451;&#3627408457;
&#3627409150;
=&#3627408438;
1
&#3627408451;&#3627408457;
&#3627409150;
=&#3627408451;(
&#3627408474;
&#3627409164;
)
&#3627409150;
=&#3627408438;
1 ⇒
&#3627408451;
&#3627409164;
&#3627409150;
=
&#3627408438;
1
&#3627408474;
&#3627409150;
=&#3627408438;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;=&#3627408438; ⇒&#3627408451;=&#3627408438;&#3627409164;
&#3627409150;

&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
=&#3627408438;⋅&#3627409150;⋅&#3627409164;
&#3627409150;−1

&#3627408446;
&#3627408462;(&#3627408436;&#3627408465;&#3627408470;&#3627408462;&#3627408463;&#3627408462;&#3627408481;&#3627408470;&#3627408464;)=&#3627409164;⋅
&#3627408465;&#3627408451;
&#3627408465;&#3627409164;
=&#3627409164;⋅(&#3627408438;⋅&#3627409150;⋅&#3627409164;
&#3627409150;−1
)=&#3627409150;⋅&#3627408438;⋅&#3627409164;
&#3627409150;
=&#3627409150;&#3627408451;
&#3627408498;
&#3627408514;=&#3627409208;⋅&#3627408503;
As γ>1, Adiabatic bulk modulus is greater than isothermal bulk modulus.
Bulk Modulus is not constant and it increases with increase in Pressure,
because at higher pressure the fluid offers more resistance to further
compression.





Viscosity
The Internal resistance offered by one layer of fluid to the adjacent layer is called Viscosity.
Need to define viscosity
Though the density of oil and water are almost same, their flow behaviour is not same and hence a property is
required to define flow behaviour. This property for defining flow behaviour is Viscosity.

&#3627408457;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408442;&#3627408479;&#3627408462;&#3627408465;&#3627408470;&#3627408466;&#3627408475;&#3627408481;=
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
=
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

&#3627409167;=??????
&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

→??????=
&#3627409167;
&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
=
&#3627409167;
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

&#3627408444;&#3627408467;
&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
&#3627408470;&#3627408480; &#3627408473;&#3627408462;&#3627408479;&#3627408468;&#3627408466;,&#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; &#3627408466;&#3627408462;&#3627408480;&#3627408486; &#3627408462;&#3627408480; &#3627408483;&#3627408470;&#3627408480;&#3627408464;&#3627408476;&#3627408480;&#3627408470;&#3627408481;&#3627408486; &#3627408470;&#3627408480; &#3627408473;&#3627408466;&#3627408480;&#3627408480; &#3627408470;.&#3627408466;.,&#3627408479;&#3627408466;&#3627408480;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408481;&#3627408476; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; &#3627408473;&#3627408466;&#3627408480;&#3627408480;
&#3627408444;&#3627408467;
&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
&#3627408470;&#3627408480; &#3627408480;&#3627408474;&#3627408462;&#3627408473;&#3627408473;,&#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; &#3627408465;&#3627408470;&#3627408467;&#3627408467;&#3627408470;&#3627408464;&#3627408482;&#3627408473;&#3627408481; &#3627408462;&#3627408480; &#3627408483;&#3627408470;&#3627408480;&#3627408464;&#3627408476;&#3627408480;&#3627408470;&#3627408481;&#3627408486; &#3627408470;&#3627408480; ℎ&#3627408470;&#3627408468;ℎ &#3627408470;.&#3627408466;.,&#3627408479;&#3627408466;&#3627408480;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408481;&#3627408476; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408470;&#3627408480; ℎ&#3627408470;&#3627408468;ℎ

&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
=&#3627408453;&#3627408462;&#3627408481;&#3627408466; &#3627408476;&#3627408467; &#3627408436;&#3627408475;&#3627408468;&#3627408482;&#3627408473;&#3627408462;&#3627408479; &#3627408465;&#3627408466;&#3627408467;&#3627408476;&#3627408479;&#3627408474;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (&#3627408476;&#3627408479;)&#3627408453;&#3627408462;&#3627408481;&#3627408466; &#3627408476;&#3627408467; &#3627408454;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408462;&#3627408470;&#3627408475;
Unit of Viscosity is Newton Second/ square metre (N⋅ s/m
2
)
Unit of Viscosity in CGS system is poise.
1 poise = 0.1 N⋅ s/m
2
Variation of Viscosity with temperature
In case of liquids, the intermolecular distance is small, hence cohesive forces are large. In case of gases,
intermolecular distance is small and cohesive forces are negligible.
With increase in temperature, cohesive forces decrease and resistance to flow also decreases. Therefore, viscosity
of liquid decreases with increase in temperature.
With increase in temperature molecular disturbance increases and resistance to flow increases. Viscosity of gases
increase with temperature.

Newtonian Fluid
Fluids which obey Newton’s law of viscosity are known as Newtonian fluids. According to Newton’s Law of
viscosity, shear stress is directly proportional to rate of shear strain.
&#3627409167;∝
&#3627408465;&#3627409155;
&#3627408465;&#3627408481;
⇒ &#3627409167;∝
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

&#3627409167;=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
→ &#3627408449;&#3627408466;&#3627408484;&#3627408481;&#3627408476;&#3627408475;&#3627408470;&#3627408462;&#3627408475; &#3627408441;&#3627408473;&#3627408482;&#3627408470;&#3627408465; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
μ is the slope in the graph.
Examples- Air, Water, Diesel, Kerosene, Oils, Mercury etc...



Note
For a Newtonian fluid, Viscosity doesn’t change with rate of deformation.

Non-Newtonian Fluids
Fluids which don’t obey Newton’s law of viscosity are known as Non-Newtonian fluids.
&#3627408455;ℎ&#3627408466; &#3627408468;&#3627408466;&#3627408475;&#3627408466;&#3627408479;&#3627408462;&#3627408473; &#3627408479;&#3627408466;&#3627408473;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408463;&#3627408466;&#3627408481;&#3627408484;&#3627408466;&#3627408466;&#3627408475; &#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408480;&#3627408480; (&#3627409167;) & &#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408468;&#3627408479;&#3627408462;&#3627408465;&#3627408470;&#3627408466;&#3627408475;&#3627408481; (
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
) &#3627408470;&#3627408480; &#3627409167;=&#3627408436;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
&#3627408475;
+&#3627408437;
Case 1
&#3627408437;=0;&#3627408475;>1 &#3627408439;&#3627408470;&#3627408473;&#3627408462;&#3627408481;&#3627408462;&#3627408475;&#3627408481; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465;
A fluid is said to be dilatant fluid for which the apparent viscosity increases with rate of deformation.
Examples- Rice Starch, Sugar in water
As the apparent viscosity is increasing with deformation, these fluids are known
as Shear Thickening Fluids.
&#3627409167;=&#3627408436;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
&#3627408475;
+0=&#3627408436;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
&#3627408475;

&#3627409167;=&#3627408436;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
&#3627408475;−1

&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=??????
&#3627408462;&#3627408477;&#3627408477;&#3627408462;&#3627408479;&#3627408466;&#3627408475;&#3627408481;⋅
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

Case 2
&#3627408437;=0;&#3627408475;<1 &#3627408451;&#3627408480;&#3627408466;&#3627408482;&#3627408465;&#3627408476; &#3627408477;&#3627408473;&#3627408462;&#3627408481;&#3627408470;&#3627408464; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465;&#3627408480;
For a pseudo plastic fluid, apparent viscosity decreases with rate of deformation.
Examples- Blood, milk, Colloidal Solutions etc…
As the apparent viscosity is decreasing with deformation, these fluids are known
as Shear Thinning Fluids.
Case 3
&#3627408437;≠0;&#3627408475;=1 &#3627408437;&#3627408470;&#3627408475;&#3627408468;ℎ&#3627408462;&#3627408474; &#3627408451;&#3627408473;&#3627408462;&#3627408480;&#3627408481;&#3627408470;&#3627408464;
Example- Toothpaste
In case of Bingham plastic fluids, certain minimum shear stress is required for
causing the flow of fluid. Below this shear stress there is no flow and therefore it
acts like a solid. After that it behaves like a fluid. Such substances that behaves
as both solids and fluids are known as Rheological substances and the study of
these substances is known as Rheology.
Ideal Fluid
A fluid which is non-viscous and incompressible is known as ideal fluid though
there’s no ideal fluid, it’s introduced to bring simplicity to analysis.

??????
&#3627408443;2&#3627408450;, 20℃=1 &#3627408438;&#3627408466;&#3627408475;&#3627408481;&#3627408470; &#3627408451;&#3627408476;&#3627408470;&#3627408480;&#3627408466;=10
−3
&#3627408446;&#3627408468;&#3627408474;−&#3627408480;⁄ ??????
&#3627408443;&#3627408468;=1.55 &#3627408438;&#3627408466;&#3627408475;&#3627408481;&#3627408470;&#3627408477;&#3627408476;&#3627408470;&#3627408480;&#3627408466;
??????
&#3627408443;2&#3627408450;=(50−55)??????
&#3627408462;??????&#3627408479;

Equation for Linear Velocity Profile
The velocity profile can be approximated as a linear velocity profile, if the gap between plates is very small
(narrow passages).

&#3627408481;&#3627408462;&#3627408475;&#3627409155;=
&#3627408465;&#3627408482;⋅&#3627408465;&#3627408481;
&#3627408465;&#3627408486;
=
&#3627408483;⋅&#3627408465;&#3627408481;
&#3627408486;

&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=
&#3627408483;
&#3627408486;

&#3627409167;=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=??????
&#3627408483;
&#3627408486;

&#3627408441;=&#3627409167;⋅&#3627408436;=??????⋅&#3627408436;⋅
&#3627408483;
&#3627408486;

Kinematic Viscosity (υ)
In fluid mechanics the term (μ/ρ) appears frequently and for convenience this term is taken as Kinematic
viscosity.
&#3627409168;=
??????
&#3627409164;

&#3627408444;&#3627408481;&#3627408480; &#3627408482;&#3627408475;&#3627408470;&#3627408481;&#3627408480; &#3627408462;&#3627408479;&#3627408466;
&#3627408474;
2
&#3627408480;
&#3627408470;&#3627408475; &#3627408454;.&#3627408444; &
&#3627408464;&#3627408474;
2
&#3627408480;
&#3627408476;&#3627408479; &#3627408454;&#3627408481;&#3627408476;&#3627408472;&#3627408466;.
&#3627409167;=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=
??????
&#3627409164;
&#3627408465;(&#3627409164;&#3627408482;)
&#3627408465;&#3627408486;
=&#3627409168;
&#3627408465;(&#3627409164;&#3627408482;)
&#3627408465;&#3627408486;

Significance of Kinematic Viscosity
Kinematic viscosity represents the ability of fluid to resist momentum. Therefore, it’s a measure of momentum
diffusivity.
Surface Tension

Consider the molecule A which is below the surface of liquid, this molecule is surrounded by various corresponding
molecules and hence under the influence of various cohesive forces, it will be in equilibrium.
Now consider molecule B which is on the surface of liquid, this molecule is under the influence of net downward
force, because of this there seems to be a layer formed which can resist small tensile loads.
This phenomenon is known as Surface Tension. It’s a line force i.e., it acts normal to the line drawn on the surface
and it lies in the plane of surface.
It is denoted by σ.
As Surface tension is basically due to unbalanced cohesive forces and with increase in temperature, cohesive
forces decrease decreasing Surface tension. At critical point surface tension is zero. Surface tension is very small,
so it is neglected in further fluid mechanics analysis.
Surface tension for water air interface at 20ᵒC is 0.0736 N/m.
Liquid droplets assume Spherical shape due to surface tension.∆P

Pressure in liquid drop in excess of Atmospheric pressure
&#3627408441;
&#3627408477;=&#3627409125;&#3627408451;⋅&#3627408436;=&#3627409125;&#3627408451;⋅
&#3627409163;
4
&#3627408465;
2

??????=
&#3627408441;
&#3627408480;
&#3627408447;
⇒ &#3627408441;
&#3627408480;=??????⋅&#3627408447;=??????⋅&#3627409163;&#3627408465;
&#3627408441;&#3627408476;&#3627408479; &#3627408440;&#3627408478;&#3627408482;&#3627408473;&#3627408470;&#3627408463;&#3627408479;&#3627408470;&#3627408482;&#3627408474;⇒ &#3627408441;
&#3627408477;=&#3627408441;
&#3627408480;⇒ &#3627409125;&#3627408451;⋅
&#3627409163;
4
&#3627408465;
2
=??????⋅&#3627409163;&#3627408465;



Pressure forces tries to separate the droplet whereas surface tension tries to contract the droplet i.e., surface
tension force tries to minimize surface area.
Droplets take spherical shape because sphere has minimum surface area for a given volume.
Capillarity
Capillarity is the effect of surface tension. It’s not a property.

The rise or fall of a liquid when a small diameter tube is introduced in it is known as capillarity.
The capillary rise is due to adhesion and capillary rise is due to cohesion. Water is an example for adhesion and
mercury for cohesion.

Expression for capillary rise/fall in a glass tube
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408473;&#3627408470;&#3627408478;&#3627408482;&#3627408470;&#3627408465; &#3627408463;&#3627408479;&#3627408476;&#3627408482;&#3627408468;ℎ&#3627408481; &#3627408482;&#3627408477;=&#3627408483;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408464;&#3627408476;&#3627408474;&#3627408477;&#3627408476;&#3627408475;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408441;
&#3627408480;
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408473;&#3627408470;&#3627408478;&#3627408482;&#3627408470;&#3627408465;=&#3627408454;&#3627408477;&#3627408466;&#3627408464;&#3627408470;&#3627408467;&#3627408470;&#3627408464; &#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;×&#3627408457;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466;
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;=&#3627408588;×&#3627408457;=&#3627408588;×
&#3627409163;&#3627408465;
2

4

&#3627408457;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408464;&#3627408476;&#3627408474;&#3627408477;&#3627408476;&#3627408475;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408441;
&#3627408480;=&#3627408441;
&#3627408480;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;=??????&#3627409163;&#3627408465;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408588;×
&#3627409163;&#3627408465;
2

4
=&#3627408441;
&#3627408480;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
ℎ=
4??????&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408588;&#3627408465;

??????&#3627408503;=
&#3627409362;??????
&#3627408517;
→&#3627408499;&#3627408522;&#3627408530;&#3627408534;&#3627408522;&#3627408517; &#3627408517;&#3627408531;&#3627408528;&#3627408529;

??????&#3627408503;=
????????????
&#3627408517;
→&#3627408506;&#3627408528;&#3627408514;&#3627408529; &#3627408489;&#3627408534;&#3627408515;&#3627408515;&#3627408525;&#3627408518;

??????&#3627408503;=
&#3627409360;??????
&#3627408517;
→&#3627408499;&#3627408522;&#3627408530;&#3627408534;&#3627408522;&#3627408517; &#3627408523;&#3627408518;&#3627408533;

Expression for capillary rise in the annulus of 2 concentric tubes
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408473;&#3627408470;&#3627408478;&#3627408482;&#3627408470;&#3627408465; &#3627408463;&#3627408479;&#3627408476;&#3627408482;&#3627408468;ℎ&#3627408481; &#3627408482;&#3627408477;=&#3627408483;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408464;&#3627408476;&#3627408474;&#3627408477;&#3627408476;&#3627408475;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408441;
&#3627408480;
&#3627408588;×
&#3627409163;
4
(&#3627408465;
&#3627408476;
2
−&#3627408465;
??????
2
)ℎ=??????&#3627409163;(&#3627408465;
&#3627408476;+&#3627408465;
??????)⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
ℎ=
4??????&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408588;(&#3627408465;
&#3627408476;−&#3627408465;
??????)




Expression for capillary rise between two parallel plates
&#3627408458;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408473;&#3627408470;&#3627408478;&#3627408482;&#3627408470;&#3627408465; &#3627408463;&#3627408479;&#3627408476;&#3627408482;&#3627408468;ℎ&#3627408481; &#3627408482;&#3627408477;=&#3627408483;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408464;&#3627408476;&#3627408474;&#3627408477;&#3627408476;&#3627408475;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408441;
&#3627408480;
&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;=&#3627408588;×&#3627408463;ℎ&#3627408481;
&#3627408441;
&#3627408480;=??????(&#3627408463;+&#3627408463;)=2??????&#3627408463;
&#3627408588;×&#3627408463;ℎ&#3627408481;=2??????&#3627408463;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
ℎ=
2??????⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408588;&#3627408481;


Work done in stretching a surface
&#3627408458;&#3627408476;&#3627408479;&#3627408472;=&#3627408441;&#3627408476;&#3627408479;&#3627408464;&#3627408466;×&#3627408439;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466;=(??????⋅&#3627408447;)×&#3627408485;=??????×&#3627408444;&#3627408475;&#3627408464;&#3627408479;&#3627408466;&#3627408462;&#3627408480;&#3627408466; &#3627408470;&#3627408475; &#3627408454;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; &#3627408436;&#3627408479;&#3627408466;&#3627408462; (&#3627408447;⋅&#3627408485;)
&#3627408458;&#3627408476;&#3627408479;&#3627408472;=??????×&#3627409125;&#3627408436;
Note
 The angle of contact between water & glass is 22ᵒ.
 The angle of contact between pure water & clean glass tube is 0ᵒ.
 The angle of contact between mercury & glass is 130ᵒ.

If the height of capillary tube is not sufficient for possible rise, the liquid will rise up to
top and stops because for further rise there is no glass molecules so, it stops.
If the top of the capillary tube is close, then capillary rise will decrease because the air
trapped at top exerts pressure in the downward direction.
Vapour Pressure
Let us consider a closed container with liquid partially filled in it. The surface molecules due to additional energy
overcomes cohesive forces of liquid below surface. This process occurs until the space above the liquid is
saturated. Under equilibrium the no. of molecules leaving the surface is equal to no. of molecules joining surface.
Under these conditions the pressure exerted by vapour on surface of
liquid is called Vapour pressure.
Vapour pressure increases with increases in temperature because at
higher temperature molecular activity is high.
High Volatile liquids (petrol) have high vapour pressure. Mercury has
least vapour pressure and because of this property it is used in
Manometers.

FLUID DYNAMICS
Generally, the forces acting on fluid element are pressure force Fp, gravity force Fg & viscous force Fv.
In Navier stokes equation all these forces are taken into consideration. In Euler’s analysis viscous forces are
neglected, only pressure & gravity forces are taken into consideration.
Navier stokes equation is momentum conservation equation.
Euler’s Equation
Assumption- Flow is Non-viscous

&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465;=&#3627408588;×&#3627408457;=&#3627409164;&#3627408468;×&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;
&#3627408484;=&#3627408474;&#3627408468; → &#3627408474;=&#3627409164;&#3627408457;=&#3627409164;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;
→&#3627408484;=&#3627409164;&#3627408468;×&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;
&#3627408436;&#3627408464;&#3627408464;&#3627408466;&#3627408473;&#3627408466;&#3627408479;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408476;&#3627408467; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474;=&#3627408462;
&#3627408480;=&#3627408483;
&#3627409173;&#3627408483;
&#3627409173;&#3627408480;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408481;

&#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408441;&#3627408476;&#3627408479;&#3627408464;&#3627408466; (&#3627408441;
&#3627408480;)=&#3627408474;∙&#3627408462;
&#3627408480;=&#3627409164;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;×&#3627408462;
&#3627408480;
&#3627408441;
&#3627408480;=&#3627409164;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;×(&#3627408483;
??????&#3627408483;
??????&#3627408480;
+
??????&#3627408483;
??????&#3627408481;
)

&#3627408464;&#3627408476;&#3627408480;&#3627409155;=
&#3627408465;&#3627408487;
&#3627408465;&#3627408454;
⇒ &#3627408465;&#3627408487;=&#3627408465;&#3627408454;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408484;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;=&#3627409164;&#3627408468;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;=&#3627409164;&#3627408468;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408487;

&#3627408454;&#3627408481;&#3627408479;&#3627408466;&#3627408462;&#3627408474; &#3627408441;&#3627408476;&#3627408479;&#3627408464;&#3627408466; (&#3627408441;
&#3627408480;)=&#3627408451;⋅&#3627408465;&#3627408436;−(&#3627408451;+&#3627408465;&#3627408451;)⋅&#3627408465;&#3627408436;−&#3627408484;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627409164;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408454;×(&#3627408483;
&#3627409173;&#3627408483;
&#3627409173;&#3627408480;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408481;
)=&#3627408451;⋅&#3627408465;&#3627408436;−(&#3627408451;+&#3627408465;&#3627408451;)⋅&#3627408465;&#3627408436;−&#3627409164;&#3627408468;∙&#3627408465;&#3627408436;⋅&#3627408465;&#3627408487;

The above equation is Euler’s Equation.
Bernoulli’s Equation (Conservation of Energy equation)
Assumptions
1. Flow is non-viscous
2. Flow is along a stream line
3. No energy is supplied and no energy is taken out from the fluid during the flow
4. Steady flow & Incompressible
&#3627408465;&#3627408451;+&#3627409164;&#3627408468;∙&#3627408465;&#3627408487;+&#3627409164;⋅&#3627408465;&#3627408454;×(&#3627408483;
&#3627409173;&#3627408483;
&#3627409173;&#3627408480;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408481;
)=0→&#3627408465;&#3627408451;+&#3627409164;&#3627408468;∙&#3627408465;&#3627408487;+&#3627409164;⋅&#3627408465;&#3627408454;×&#3627408483;
&#3627408465;&#3627408483;
&#3627408465;&#3627408480;
=0→ &#3627408465;&#3627408451;+&#3627409164;&#3627408468;∙&#3627408465;&#3627408487;+&#3627409164;&#3627408483;∙&#3627408465;&#3627408483;=0

&#3627408465;&#3627408451;
&#3627409164;
+&#3627408468;⋅&#3627408465;&#3627408487;+&#3627408483;⋅&#3627408465;&#3627408483;=0
After Integration,

1
&#3627409164;
∫&#3627408465;&#3627408451;+&#3627408468;∫&#3627408465;&#3627408487;+&#3627408483;∫&#3627408465;&#3627408483;=∫0
&#3627408451;
&#3627409164;
+&#3627408468;&#3627408487;+
&#3627408483;
2
2
=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;→ &#3627408438;&#3627408473;&#3627408462;&#3627408480;&#3627408480;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408437;&#3627408466;&#3627408479;&#3627408475;&#3627408476;&#3627408482;&#3627408473;&#3627408473;&#3627408470;’&#3627408480; &#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
In above equation, each term represents energy of the fluid per unit mass.
&#3627408465;&#3627408451;+&#3627409164;&#3627408468;∙&#3627408465;&#3627408487;+&#3627409164;⋅&#3627408465;&#3627408454;×(&#3627408483;
&#3627409173;&#3627408483;
&#3627409173;&#3627408480;
+
&#3627409173;&#3627408483;
&#3627409173;&#3627408481;
)=0
Steady flow

Bernoulli’s Theorem
In a steady incompressible non-viscous flow along a stream line, the sum of pressure, kinetic & potential energy is
constant.
&#3627408440;&#3627408475;&#3627408466;&#3627408479;&#3627408468;&#3627408486;
&#3627408474;&#3627408462;&#3627408480;&#3627408480;

&#3627408451;
&#3627409164;
+
&#3627408483;
2
2
+&#3627408468;&#3627408487;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
&#3627408440;&#3627408475;&#3627408466;&#3627408479;&#3627408468;&#3627408486;
&#3627408474;&#3627408462;&#3627408480;&#3627408480;×&#3627408468;

&#3627408440;&#3627408475;&#3627408466;&#3627408479;&#3627408468;&#3627408486;
&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;

&#3627408451;
&#3627409164;&#3627408468;
+
&#3627408483;
2
2&#3627408468;
+&#3627408487;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
&#3627408451;
&#3627408588;
+
&#3627408483;
2
2&#3627408468;
+&#3627408487;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
In this equation, each term represents energy per unit weight.
Various heads in Fluid mechanics
Pressure Head
The height by which fluid rises due to pressure when a piezometer is
connected is known as pressure head.
&#3627408451;=0+&#3627409164;&#3627408468;ℎ=&#3627408588;ℎ
ℎ=
&#3627408451;
&#3627408588;
=&#3627408477;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466; ℎ&#3627408466;&#3627408462;&#3627408465;
Velocity Head/ Kinematic energy head
It’s the height by which fluid falls in a frictionless environment to reach to a particular height.
&#3627408483;=√2&#3627408468;ℎ
ℎ=
&#3627408483;
2
2&#3627408468;
=&#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; ℎ&#3627408466;&#3627408462;&#3627408465;
Potential Energy head (z)
It’s the vertical distance with respect to a reference line.
Piezometric Head
The sum of pressure and potential energy is known as piezometric head.
&#3627408451;&#3627408470;&#3627408466;&#3627408487;&#3627408476;&#3627408474;&#3627408466;&#3627408481;&#3627408479;&#3627408470;&#3627408464; ℎ&#3627408466;&#3627408462;&#3627408465;=
&#3627408451;
&#3627408588;
+&#3627408487;
Relationship between first law of thermodynamics & Bernoulli’s equation

1+
&#3627408483;
1
2
2
+&#3627408487;
1&#3627408468;+&#3627408478;=ℎ
2+
&#3627408483;
2
2
2
+&#3627408487;
2&#3627408468;+&#3627408484;
ℎ=&#3627408480;&#3627408477;&#3627408466;&#3627408464;&#3627408470;&#3627408467;&#3627408470;&#3627408464; &#3627408466;&#3627408475;&#3627408481;ℎ&#3627408462;&#3627408473;ℎ&#3627408486;,&#3627408478;=
ℎ&#3627408466;&#3627408462;&#3627408481; &#3627408481;&#3627408479;&#3627408462;&#3627408475;&#3627408480;&#3627408467;&#3627408466;&#3627408479;
&#3627408474;&#3627408462;&#3627408480;&#3627408480;
,&#3627408484;=
&#3627408458;&#3627408476;&#3627408479;&#3627408472;
&#3627408474;&#3627408462;&#3627408480;&#3627408480;

Assumptions
1. Steady flow & incompressible
2. No heat transfer & work transfer
3. No change in Internal energy
ℎ=&#3627408482;+&#3627408451;&#3627408587;=&#3627408482;+
&#3627408451;
&#3627409164;

&#3627408482;
1+
&#3627408451;
1
&#3627409164;
+
&#3627408483;
1
2
2
+&#3627408487;
1&#3627408468;+&#3627408478;=&#3627408482;
2+
&#3627408451;
2
&#3627409164;
+
&#3627408483;
2
2
2
+&#3627408487;
2&#3627408468;+&#3627408484;
(&#3627408482;
1=&#3627408482;
2,&#3627408478;=&#3627408484;=0)
&#3627408451;
&#3627408588;
+
&#3627408483;
2
2&#3627408468;
+&#3627408487;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481; →&#3627408437;&#3627408466;&#3627408479;&#3627408475;&#3627408476;&#3627408482;&#3627408473;&#3627408473;&#3627408470;′&#3627408480;&#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;

Bernoulli’s equation for a Horizontal Stream line

&#3627408487;
1=&#3627408487;
2
&#3627408451;
1
&#3627409164;&#3627408468;
+
&#3627408483;
1
2
2&#3627408468;
+&#3627408487;
1=
&#3627408451;
2
&#3627409164;&#3627408468;
+
&#3627408483;
2
2
2&#3627408468;
+&#3627408487;
2
&#3627408451;
1
&#3627409164;&#3627408468;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627409164;&#3627408468;
+
&#3627408483;
2
2
2&#3627408468;

Bernoulli’s equation for a real fluid flow problem
&#3627408451;
1
&#3627409164;&#3627408468;
+
&#3627408483;
1
2
2&#3627408468;
+&#3627408487;
1=
&#3627408451;
2
&#3627409164;&#3627408468;
+
&#3627408483;
2
2
2&#3627408468;
+&#3627408487;
2+ℎ
??????
(ℎ
??????=&#3627408443;&#3627408466;&#3627408462;&#3627408465; &#3627408447;&#3627408476;&#3627408480;&#3627408480;)




In case of irrotational flow, Bernoulli’s equation can be applied between any 2 points (throughout the flow field),
because the stream line constants are same for different streamlines in irrotational flow.
In case of rotational flow, Bernoulli’s must be applied only for a particular stream line, because the stream line
constants are different for different stream lines.
Bernoulli’s equation is not the total energy conservation equation because heat transfer and work transfer are
not taken into consideration. Therefore, Bernoulli’s equation is known as Mechanical Energy Conservation.
Applications of Bernoulli’s Equation
Venturimeter
It’s used for calculating Discharge.

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
+&#3627408487;
1=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;
+&#3627408487;
2
(
&#3627408451;
1
&#3627408588;

&#3627408451;
2
&#3627408588;
)+(&#3627408487;
1−&#3627408487;
2)=
&#3627408483;
2
2
2&#3627408468;

&#3627408483;
1
2
2&#3627408468;
=ℎ (&#3627408451;&#3627408470;&#3627408466;&#3627408487;&#3627408476;&#3627408474;&#3627408466;&#3627408481;&#3627408479;&#3627408470;&#3627408464; ℎ&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481;)
(
&#3627408451;
1
&#3627408588;
+&#3627408487;
1)−(
&#3627408451;
2
&#3627408588;
+&#3627408487;
2)=
&#3627408483;
2
2
2&#3627408468;

&#3627408483;
1
2
2&#3627408468;
=ℎ
&#3627408441;&#3627408476;&#3627408479; &#3627408443;&#3627408476;&#3627408479;&#3627408470;&#3627408487;&#3627408476;&#3627408475;&#3627408481;&#3627408462;&#3627408473; &#3627408438;&#3627408462;&#3627408480;&#3627408466;(&#3627408487;
1=&#3627408487;
2),
(
&#3627408451;
1
&#3627408588;

&#3627408451;
2
&#3627408588;
)=
&#3627408483;
2
2
2&#3627408468;

&#3627408483;
1
2
2&#3627408468;
=ℎ→&#3627408483;
1
2
−&#3627408483;
2
2
=2&#3627408468;ℎ
&#3627408452;=&#3627408436;
1⋅&#3627408483;
1=&#3627408436;
2⋅&#3627408483;
2→&#3627408483;
1=
&#3627408452;
&#3627408436;
1
→&#3627408483;
2=
&#3627408452;
&#3627408436;
2

&#3627408483;
1
2
−&#3627408483;
2
2
=(
&#3627408452;
&#3627408436;
1
)
2
−(
&#3627408452;
&#3627408436;
2
)
2
=2&#3627408468;ℎ → &#3627408452;
2
(
1
&#3627408436;
1
2

1
&#3627408436;
2
2
)=2&#3627408468;ℎ
&#3627408452;=
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
2
2

As no losses were assumed while deriving this equation, this discharge is known as ideal
discharge or theoretical discharge.
&#3627408452;
&#3627408481;ℎ&#3627408466;&#3627408476;&#3627408479;&#3627408466;&#3627408481;??????&#3627408464;&#3627408462;&#3627408473;=
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
2
2



&#3627408451;
1
&#3627408588;
+&#3627408443;+&#3627408485;−
&#3627408485;⋅&#3627408480;
&#3627408443;&#3627408468;
&#3627408480;
−&#3627408443;=
&#3627408451;
2
&#3627408588;


&#3627408451;
1
&#3627408588;

&#3627408451;
2
&#3627408588;
=&#3627408485;⋅(
&#3627408480;
&#3627408443;&#3627408468;
&#3627408480;
−1)=ℎ (&#3627408451;&#3627408470;&#3627408466;&#3627408487;&#3627408476; ℎ&#3627408481;.)
→ &#3627408436;
1&#3627408483;
1=&#3627408436;
2&#3627408483;
2→&#3627408436;
2<&#3627408436;
1 ⇒&#3627408483;
2>&#3627408483;
1

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;

→ &#3627408483;
2>&#3627408483;
1⇒&#3627408451;
2<&#3627408451;
1

Principle of Venturimeter
By reducing the area in a steady incompressible flow, velocity increases. This results in decrease of pressure. Due
to this pressure difference, there will be manometric deflection when differential manometer is connected. By
measuring the &#3627408485;, the discharge will be calculated.
Coefficient of discharge (Cd)
It is defined as the ratio of actual discharge to theoretical discharge.
Cd depends on type of flow (Reynolds no.) and area ratio.
As Venturimeter is gradually converging and diverging device, losses are less and hence Cd is 0.94―0.98.
&#3627408452;
&#3627408481;ℎ&#3627408466;&#3627408476;&#3627408479;&#3627408466;&#3627408481;??????&#3627408464;&#3627408462;&#3627408473;=
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
2
2

&#3627408452;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=&#3627408438;
&#3627408465;×
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
2
2

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;
+ℎ
&#3627408473;&#3627408476;&#3627408480;&#3627408480;&#3627408466;&#3627408480;→ (
&#3627408451;
1
&#3627408588;

&#3627408451;
2
&#3627408588;
)−ℎ
&#3627408473;=
&#3627408483;
2
2
2&#3627408468;

&#3627408483;
1
2
2&#3627408468;

ℎ−ℎ
&#3627408473;=
&#3627408483;
2
2
−&#3627408483;
1
2
2&#3627408468;
⇒ &#3627408483;
2
2
−&#3627408483;
1
2
=2&#3627408468;(ℎ−ℎ
&#3627408473;)
(
&#3627408452;
&#3627408436;
1
)
2
−(
&#3627408452;
&#3627408436;
2
)
2
=2&#3627408468;(ℎ−ℎ
&#3627408473;) (&#3627408483;
1=
&#3627408452;
&#3627408462;
1
,&#3627408483;
2=
&#3627408452;
&#3627408462;
2
)
&#3627408452;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;(ℎ−ℎ
&#3627408473;
)
√&#3627408436;
1
2
−&#3627408436;
2
2

&#3627408438;
&#3627408465;×
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
2
2
=
&#3627408436;
1⋅&#3627408436;
2 √2&#3627408468;(ℎ−ℎ
&#3627408473;
)
√&#3627408436;
1
2
−&#3627408436;
2
2

&#3627408438;
&#3627408465;=√
ℎ−ℎ
&#3627408473;


General Properties of a Venturimeter
&#3627408465;
2=(
1
3
&#3627408481;&#3627408476;
1
2
)·&#3627408465;
1
&#3627408436;&#3627408475;&#3627408468;&#3627408473;&#3627408466; &#3627408476;&#3627408467; &#3627408464;&#3627408476;&#3627408475;&#3627408483;&#3627408466;&#3627408479;&#3627408468;&#3627408466;&#3627408475;&#3627408464;&#3627408466;=20ᵒ−22ᵒ
&#3627408436;&#3627408475;&#3627408468;&#3627408473;&#3627408466; &#3627408476;&#3627408467; &#3627408465;&#3627408470;&#3627408483;&#3627408466;&#3627408479;&#3627408468;&#3627408466;&#3627408475;&#3627408464;&#3627408466;=7ᵒ
The angle of divergence is generally kept less than 7ᵒ, in order to avoid flow separation.
Orifice meter
The device is used for finding out discharge and it is the cheapest measurement for calculating discharge.
It is based on same principle as Venturimeter.
It’s a circular disc with a circular hole.
&#3627408438;&#3627408476;&#3627408466;&#3627408467;&#3627408467;&#3627408470;&#3627408464;&#3627408470;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408438;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (&#3627408438;
&#3627408464;
)=
&#3627408436;
2
&#3627408436;
&#3627408476;
=
&#3627408457;&#3627408466;&#3627408475;&#3627408462; &#3627408464;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408462; &#3627408436;&#3627408479;&#3627408466;&#3627408462;
&#3627408450;&#3627408479;&#3627408470;&#3627408467;&#3627408470;&#3627408464;&#3627408466; &#3627408436;&#3627408479;&#3627408466;&#3627408462;

&#3627408438;
&#3627408464;=
&#3627408436;
2
&#3627408436;
&#3627408476;
→ &#3627408436;
2=&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;
&#3627408452;=&#3627408436;
1⋅&#3627408483;
1=&#3627408436;
2⋅&#3627408483;
2→ &#3627408483;
1=
&#3627408436;
2⋅&#3627408483;
2
&#3627408436;
1

&#3627408483;
1=
&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;⋅&#3627408483;
2
&#3627408436;
1


&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;
→ (
&#3627408451;
1
&#3627408588;

&#3627408451;
2
&#3627408588;
)=
&#3627408483;
2
2
2&#3627408468;

&#3627408483;
1
2
2&#3627408468;
=ℎ → &#3627408483;
2
2
−&#3627408483;
1
2
=2&#3627408468;ℎ
&#3627408483;
2
2
−(
&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;⋅&#3627408483;
2
&#3627408436;
1
)
2
=2&#3627408468;ℎ ⇒ &#3627408483;
2
2
(1−(
&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;
&#3627408436;
1
)
2
)=2&#3627408468;ℎ
&#3627408483;
2=
√2&#3627408468;ℎ
√1−
&#3627408438;
&#3627408464;
2
⋅&#3627408436;
&#3627408476;
2
&#3627408436;
1
2

&#3627408452;=&#3627408436;
2⋅&#3627408483;
2=&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;⋅
√2&#3627408468;ℎ
√1−
&#3627408438;
&#3627408464;
2
⋅&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
=&#3627408438;
&#3627408464;⋅&#3627408436;
&#3627408476;⋅
√2&#3627408468;ℎ
√1−
&#3627408438;
&#3627408464;
2
⋅&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
×
√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2

(&#3627408448;&#3627408482;&#3627408473;&#3627408481;&#3627408477;&#3627408473;&#3627408470;&#3627408475;&#3627408468; &#3627408462;&#3627408475;&#3627408465; &#3627408465;&#3627408470;&#3627408483;&#3627408470;&#3627408465;&#3627408470;&#3627408475;&#3627408468; &#3627408463;&#3627408486; √1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
&#3627408462;&#3627408475;&#3627408465; &#3627408479;&#3627408466;&#3627408462;&#3627408479;&#3627408479;&#3627408462;&#3627408475;&#3627408468;&#3627408470;&#3627408475;&#3627408468;)

→&#3627408452;=
&#3627408438;
&#3627408464;⋅√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
√1−
&#3627408438;
&#3627408464;
2
⋅&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
×
&#3627408436;
&#3627408476;⋅√2&#3627408468;ℎ
√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
→&#3627408452;=&#3627408438;
&#3627408465;×
&#3627408436;
&#3627408476;⋅√2&#3627408468;ℎ
√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2

(



&#3627408438;
&#3627408465;=
&#3627408438;
&#3627408464;⋅√1−
&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
√1−
&#3627408438;
&#3627408464;
2
⋅&#3627408436;
&#3627408476;
2
&#3627408436;
1
2
)




→&#3627408452;=
&#3627408438;
&#3627408465;⋅&#3627408436;
&#3627408476;⋅&#3627408436;
1⋅√2&#3627408468;ℎ
√&#3627408436;
1
2
−&#3627408436;
&#3627408476;
2

As the area reduction is sudden in orifice meter, losses are more and hence Cd of orifice meter is
less. (Cd⇒ 0.68―0.76)
Pilot tube
It’s used for finding velocity of the flow.
Case 1: - Velocity in Open Chamber
&#3627408483;
2=0
&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;

&#3627408451;
1
&#3627408588;
=&#3627408454;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408464; &#3627408443;&#3627408466;&#3627408462;&#3627408465;,
&#3627408483;
1
2
2&#3627408468;
=&#3627408439;&#3627408486;&#3627408475;&#3627408462;&#3627408474;&#3627408470;&#3627408464; &#3627408443;&#3627408466;&#3627408462;&#3627408465;,
&#3627408451;
2
&#3627408588;
=&#3627408454;&#3627408481;&#3627408462;&#3627408468;&#3627408475;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408443;&#3627408466;&#3627408462;&#3627408465;
&#3627408454;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408464; &#3627408443;&#3627408466;&#3627408462;&#3627408465;+&#3627408439;&#3627408486;&#3627408475;&#3627408462;&#3627408474;&#3627408470;&#3627408464; &#3627408443;&#3627408466;&#3627408462;&#3627408465;=&#3627408454;&#3627408481;&#3627408462;&#3627408468;&#3627408475;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408443;&#3627408466;&#3627408462;&#3627408465;
&#3627408451;
1=0+&#3627409164;&#3627408468;ℎ
&#3627408476;→
&#3627408451;
1
&#3627409164;&#3627408468;
=
&#3627408451;
1
&#3627408588;
=ℎ
&#3627408476;
&#3627408451;
2=0+&#3627409164;&#3627408468;(ℎ+ℎ
&#3627408476;)→
&#3627408451;
2
&#3627409164;&#3627408468;
=
&#3627408451;
2
&#3627408588;
=ℎ+ℎ
&#3627408476;
Substituting we get,

&#3627408476;+
&#3627408483;
1
2
2&#3627408468;
=(ℎ+ℎ
&#3627408476;)→ ℎ=
&#3627408483;
1
2
2&#3627408468;
=&#3627408439;&#3627408486;&#3627408475;&#3627408462;&#3627408474;&#3627408470;&#3627408464; &#3627408443;&#3627408466;&#3627408462;&#3627408465;
&#3627408483;
1=√2&#3627408468;ℎ=√2&#3627408468;⋅(&#3627408439;&#3627408486;&#3627408475;&#3627408462;&#3627408474;&#3627408470;&#3627408464; ℎ&#3627408466;&#3627408462;&#3627408465;)
&#3627408483;
1=√2&#3627408468;ℎ=√2&#3627408468;⋅(&#3627408454;&#3627408481;&#3627408462;&#3627408468;&#3627408475;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; ℎ&#3627408466;&#3627408462;&#3627408465;−&#3627408454;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408464; ℎ&#3627408466;&#3627408462;&#3627408465;)
Case 2: - Velocity in Pipes
&#3627408483;
2=0
&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;

&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2−&#3627408451;
1
&#3627408588;

&#3627408451;
1
&#3627408588;
+&#3627408443;+
&#3627408485;⋅&#3627408454;
&#3627408443;&#3627408468;
&#3627408454;
−&#3627408485;−&#3627408443;=
&#3627408451;
2
&#3627408588;

&#3627408451;
2−&#3627408451;
1
&#3627408588;
=&#3627408485;(
&#3627408454;
&#3627408443;&#3627408468;
&#3627408454;
)−&#3627408485;
Equating above equations, we get
&#3627408483;
1
2
2&#3627408468;
=
&#3627408485;⋅&#3627408454;
&#3627408443;&#3627408468;
&#3627408454;
−&#3627408485;
&#3627408483;
1=√2&#3627408468;&#3627408485;⋅(
&#3627408454;
&#3627408443;&#3627408468;
&#3627408454;
−1)

If the specific gravity of manometric fluid is less than specific gravity of following fluid, inverted differential
U―tube manometer is used.
&#3627408483;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=&#3627408438;
&#3627408483;⋅√2&#3627408468;&#3627408485;⋅(
&#3627408454;
&#3627408443;&#3627408468;
&#3627408454;
−1)=&#3627408438;
&#3627408483;⋅&#3627408483;
&#3627408481;ℎ&#3627408466;&#3627408476;&#3627408479;&#3627408466;&#3627408481;??????&#3627408464;&#3627408462;&#3627408473;

Device Shape Losses Cd Cost
Venturimeter

Low High High
Flow Nozzle

Medium Medium Medium
Orifice meter

High Low Cheap
Force on Pipe Bends
Momentum Equation
??????&#3627408441;=&#3627408474;⋅&#3627408462;=&#3627408474;(
&#3627408483;−&#3627408482;
&#3627408481;
)=&#3627408474;̇⋅(&#3627408483;−&#3627408482;)
(&#3627408474;̇=&#3627409164;⋅&#3627408436;⋅&#3627408483;⃗)
??????&#3627408441;=&#3627409164;&#3627408452;(&#3627408483;−&#3627408482;)  Momentum Equation

Applying Momentum equation in x-direction,
&#3627408451;
1⋅&#3627408436;
1+&#3627408441;
&#3627408485;−&#3627408451;
2⋅&#3627408436;
2⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;=&#3627409164;&#3627408452;(&#3627408483;
2⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;−&#3627408483;
1)
Momentum equation in y-direction,
&#3627408441;
&#3627408486;−&#3627408451;
2⋅&#3627408436;
2⋅&#3627408480;&#3627408470;&#3627408475;&#3627409155;=&#3627409164;&#3627408452;(&#3627408483;
2⋅&#3627408480;&#3627408470;&#3627408475;&#3627409155;−0)

VORTEX MOTION
The motion of the fluid along the curved path is known as vortex motion.
1. Vortex motion is of 2 types, Forced Motion & Free Vortex
Forced Vortex Motion
The motion if a fluid in a curved path under the influence of external agency is known as forced vortex motion. As
there is a continuous expenditure of energy in forced vortex motion, Bernoulli’s equation is not applicable. The
equation &#3627408483;=r⋅ω, is applicable for forced vortex motion.
Example- Liquid in a container when rotated, motion of fluid in impeller of a centrifugal pump.
Forced vortex motion is Rotational Flow.
Free Vortex motion
In free vortex motion, the fluid moves in curved path due to internal fluid action. But not due to external torque.
As there is no expenditure of energy. Therefore, Bernoulli’s equation is applicable for free vortex motion.
&#3627408465;
&#3627408465;&#3627408481;
(&#3627408474;&#3627408483;&#3627408479;)=&#3627408455;=0→ &#3627408474;&#3627408483;&#3627408479;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;→ &#3627408483;&#3627408479;=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
&#3627408483;⋅&#3627408479;=&#3627408446; → &#3627408467;&#3627408479;&#3627408466;&#3627408466; &#3627408483;&#3627408476;&#3627408479;&#3627408481;&#3627408466;&#3627408485; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
Example – Motion of fluid in diffuser of centrifugal pump. Flow of fluid in pipe bends, whirl pool, flow of liquid in wash
basin.

Free Vortex is an Irrotational flow
Generalized equation for Vortex Motion
&#3627408457;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466;=&#3627408465;&#3627408436;⋅&#3627408465;&#3627408479; &#3627408448;&#3627408462;&#3627408480;&#3627408480;=&#3627408483;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466;⋅&#3627409164;
&#3627408474;=&#3627409164;⋅&#3627408465;&#3627408436;⋅&#3627408465;&#3627408479;
&#3627408451;⋅&#3627408465;&#3627408436;+
&#3627409164;⋅&#3627408465;&#3627408436;⋅&#3627408465;&#3627408479;⋅&#3627408483;
2
&#3627408479;
=(&#3627408451;+
&#3627409173;&#3627408451;
&#3627409173;&#3627408479;
&#3627408465;&#3627408479;)&#3627408465;&#3627408436;
&#3627408451;+
&#3627409164;⋅&#3627408465;&#3627408479;⋅&#3627408483;
2
&#3627408479;
=&#3627408451;+
&#3627409173;&#3627408451;
&#3627409173;&#3627408479;
&#3627408465;&#3627408479;
&#3627409164;⋅&#3627408483;
2
&#3627408479;
&#3627408465;&#3627408479;=
&#3627409173;&#3627408451;
&#3627409173;&#3627408479;
&#3627408465;&#3627408479;
&#3627409164;⋅&#3627408483;
2
&#3627408479;
=
&#3627409173;&#3627408451;
&#3627409173;&#3627408479;


This equation gives the variation of pressure in radial direction.
&#3627409173;&#3627408451;
&#3627409173;&#3627408487;
=−&#3627408588;=−&#3627409164;&#3627408468;
&#3627408465;&#3627408451;=
&#3627409173;&#3627408451;
&#3627409173;&#3627408479;
⋅&#3627408465;&#3627408479;+
&#3627409173;&#3627408451;
&#3627409173;&#3627408487;
⋅&#3627408465;&#3627408487;
&#3627408465;&#3627408451;=
&#3627409164;⋅&#3627408483;
2
&#3627408479;
⋅&#3627408465;&#3627408479;−&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;

Free Vortex Motion Equation
&#3627408465;&#3627408451;=
&#3627409164;⋅&#3627408483;
2
&#3627408479;
⋅&#3627408465;&#3627408479;−&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;
&#3627408441;&#3627408476;&#3627408479; &#3627408467;&#3627408479;&#3627408466;&#3627408466; &#3627408483;&#3627408476;&#3627408479;&#3627408481;&#3627408466;&#3627408485; &#3627408474;&#3627408476;&#3627408481;&#3627408470;&#3627408476;&#3627408475;,&#3627408483;&#3627408479;=&#3627408464; → &#3627408483;=
&#3627408464;
&#3627408479;

→ ∫&#3627408465;&#3627408451;
&#3627408451;2
&#3627408451;1
=∫
&#3627409164;
&#3627408479;

&#3627408464;
2
&#3627408479;
2
⋅&#3627408465;&#3627408479;
&#3627408479;2
&#3627408479;1
−∫&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;
&#3627408487;2
&#3627408487;1

&#3627408451;
2−&#3627408451;
1=&#3627409164;⋅&#3627408464;
2
⋅(
1
&#3627408479;
1
2

1
&#3627408479;
2
2
)−&#3627409164;&#3627408468;(&#3627408487;
2−&#3627408487;
1)→ &#3627408451;
2−&#3627408451;
1=&#3627409164;⋅
&#3627408464;
2
&#3627408479;
1
2
−&#3627409164;⋅
&#3627408464;
2
&#3627408479;
2
2
−&#3627409164;&#3627408468;&#3627408487;
2−&#3627409164;&#3627408468;&#3627408487;
1
&#3627408451;
2−&#3627408451;
1=&#3627409164;⋅
&#3627408483;
1
2
2
−&#3627409164;⋅
&#3627408483;
2
2
2
−&#3627409164;&#3627408468;&#3627408487;
2−&#3627409164;&#3627408468;&#3627408487;
1
&#3627408451;
2+
&#3627409164;&#3627408483;
1
2
2
+&#3627409164;&#3627408468;&#3627408487;
1=&#3627408451;
1+
&#3627409164;&#3627408483;
2
2
2
+&#3627409164;&#3627408468;&#3627408487;
2→ &#3627408437;&#3627408466;&#3627408479;&#3627408475;&#3627408476;&#3627408482;&#3627408473;&#3627408473;&#3627408470;

&#3627408480; &#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
Bernoulli’s equation is applicable for free vortex of motion.
Forced Vortex Motion Equation
&#3627408465;&#3627408451;=
&#3627409164;⋅&#3627408483;
2
&#3627408479;
⋅&#3627408465;&#3627408479;−&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;
&#3627408441;&#3627408476;&#3627408479; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466;&#3627408465; &#3627408483;&#3627408476;&#3627408479;&#3627408481;&#3627408466;&#3627408485; &#3627408474;&#3627408476;&#3627408481;&#3627408470;&#3627408476;&#3627408475;,&#3627408483;=&#3627408479;&#3627409172;
&#3627408465;&#3627408451;=
&#3627409164;⋅(&#3627408479;&#3627409172;)
2
&#3627408479;
⋅&#3627408465;&#3627408479;−&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;→ &#3627408465;&#3627408451;=&#3627409164;⋅&#3627408479;⋅&#3627409172;
2
⋅&#3627408465;&#3627408479;−&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;
∫&#3627408465;&#3627408451;
&#3627408451;2
&#3627408451;1
=∫&#3627409164;⋅&#3627408479;⋅&#3627409172;
2
⋅&#3627408465;&#3627408479;
&#3627408479;2
&#3627408479;1
−∫&#3627409164;&#3627408468;⋅&#3627408465;&#3627408487;
&#3627408487;2
&#3627408487;1

&#3627408451;
2−&#3627408451;
1=
&#3627409164;⋅&#3627409172;
2
2
⋅(&#3627408479;
2
2
−&#3627408479;
1
2
)−&#3627409164;&#3627408468;(&#3627408487;
2−&#3627408487;
1
)
&#3627408447;&#3627408466;&#3627408481; &#3627408482;&#3627408480; &#3627408475;&#3627408476;&#3627408484; &#3627408480;&#3627408466;&#3627408473;&#3627408466;&#3627408464;&#3627408481; &#3627408481;&#3627408484;&#3627408476; &#3627408477;&#3627408476;&#3627408470;&#3627408475;&#3627408481;&#3627408480; ① & ② &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466;. →(&#3627408503;
&#3627409359;=&#3627408503;
&#3627409360;)
Substituting in above eqn (Bernoulli’s)
0=
&#3627409164;⋅&#3627409172;
2
2
⋅(&#3627408479;
2
2
−&#3627408479;
1
2
)−&#3627409164;&#3627408468;(&#3627408487;
2−&#3627408487;
1)
&#3627408487;
2−&#3627408487;
1=
&#3627409172;
2
2&#3627408468;
⋅(&#3627408479;
2
2
−&#3627408479;
1
2
)
&#3627408444;&#3627408467; &#3627408477;&#3627408476;&#3627408470;&#3627408475;&#3627408481; ① &#3627408470;&#3627408480; &#3627408481;&#3627408462;&#3627408472;&#3627408466;&#3627408475; &#3627408476;&#3627408475; &#3627408462;&#3627408485;&#3627408470;&#3627408480;,&#3627408479;
1=0
&#3627408487;
2−&#3627408487;
1=&#3627408487;=
&#3627409172;
2
2&#3627408468;
⋅&#3627408479;
2
2

&#3627408444;&#3627408467; &#3627408479;
2=&#3627408453;,→&#3627408487;=&#3627408443;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408477;&#3627408462;&#3627408479;&#3627408462;&#3627408463;&#3627408476;&#3627408473;&#3627408473;&#3627408470;&#3627408476;&#3627408465; (&#3627408443;)=
&#3627409172;
2
⋅&#3627408453;
2
2&#3627408468;



&#3627408457;&#3627408476;&#3627408473;&#3627408482;&#3627408474;&#3627408466; &#3627408476;&#3627408467; &#3627408451;&#3627408462;&#3627408479;&#3627408462;&#3627408463;&#3627408476;&#3627408473;&#3627408473;&#3627408470;&#3627408476;&#3627408465;=
&#3627409163;&#3627408453;
2
&#3627408443;
2

LAMINAR FLOW
(Viscous flow of incompressible fluids)
Reynolds Number
It is the ratio of inertia force to viscous force.
&#3627408453;
&#3627408466;=
&#3627409164;&#3627408483;&#3627408447;
??????

&#3627408447;→ &#3627408464;ℎ&#3627408462;&#3627408479;&#3627408466;&#3627408464;&#3627408481;&#3627408466;&#3627408479;&#3627408470;&#3627408480;&#3627408481;&#3627408470;&#3627408464; &#3627408465;&#3627408470;&#3627408474;&#3627408466;&#3627408475;&#3627408480;&#3627408470;&#3627408476;&#3627408475;
Significance of L
It is such a dimension over which significant changes in properties occur.
For flow through pipes, characteristic dimension is pipe diameter. For flow over a flat plate, characteristic
dimension is distance from leading edge (&#3627408485;).
Reynold found from his experiment for flow through pipes,
Re < 2000  Laminar
2000 < Re <4000 Transition
Re > 4000  Turbulent
&#3627408451;
1
&#3627409164;&#3627408468;
+
&#3627408483;
1
2
2&#3627408468;
+&#3627408487;
1=
&#3627408451;
2
&#3627409164;&#3627408468;
+
&#3627408483;
2
2
2&#3627408468;
+&#3627408487;
2+ℎ
??????
&#3627408451;
1
&#3627409164;&#3627408468;
=
&#3627408451;
2
&#3627409164;&#3627408468;
+ℎ
?????? (&#3627408483;
1=&#3627408483;
2, &#3627408487;
1=&#3627408487;
2)
&#3627408451;
1−&#3627408451;
2
&#3627409164;&#3627408468;
=ℎ
??????
The pressure decreases in the direction of flow in order to overcome loses i.e.,
pressure gradient is negative in the direction of flow.
Darcy-Weisbach equation
This equation is used for calculating head loss due to friction.
→ℎ
??????=
&#3627408467;&#3627408447;&#3627408483;
2
2&#3627408468;&#3627408439;
&#3627408467;→&#3627408439;&#3627408462;&#3627408479;&#3627408464;&#3627408486; &#3627408467;&#3627408479;&#3627408470;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408467;&#3627408462;&#3627408464;&#3627408481;&#3627408476;&#3627408479; (&#3627408476;&#3627408479;)&#3627408448;&#3627408476;&#3627408476;&#3627408465;&#3627408486; &#3627408467;&#3627408479;&#3627408470;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408467;&#3627408462;&#3627408464;&#3627408481;&#3627408476;&#3627408479;
→ℎ
??????=
4&#3627408467;′&#3627408447;&#3627408483;
2
2&#3627408468;&#3627408439;
&#3627408467;

→&#3627408441;&#3627408462;&#3627408475;&#3627408475;&#3627408470;&#3627408475;&#3627408468;&#3627408480; &#3627408467;&#3627408479;&#3627408470;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408467;&#3627408462;&#3627408464;&#3627408481;&#3627408476;&#3627408479;
&#3627408467;=4&#3627408467;′
This equation is applicable for Laminar or turbulent flow, horizontal, inclined or vertical pipes, but the flow must
be steady.
Fully developed flow
A flow is said to be a fully developed flow if the velocity profile doesn’t change in longitudinal direction and
pressure gradient (dP/dx) remains constant.

Laminar flow through Circular pipes (Hagen- Poiseuille flow)
Assumptions-
1. Steady flow
2. Fully developed flow

??????&#3627408441;=&#3627408474;&#3627408462;=0
(&#3627408467;&#3627408479;&#3627408476;&#3627408474; &#3627408481;ℎ&#3627408466; &#3627408462;&#3627408480;&#3627408480;&#3627408482;&#3627408474;&#3627408477;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408454;&#3627408477;&#3627408462;&#3627408481;&#3627408470;&#3627408462;&#3627408473; &#3627408462;&#3627408475;&#3627408465; &#3627408481;&#3627408466;&#3627408474;&#3627408477;&#3627408476;&#3627408479;&#3627408462;&#3627408473; &#3627408462;&#3627408464;&#3627408464;&#3627408466;&#3627408473;&#3627408466;&#3627408479;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408462;&#3627408479;&#3627408466; &#3627408487;&#3627408466;&#3627408479;&#3627408476;)
&#3627408451;⋅&#3627409163;&#3627408479;
2
−(&#3627408451;+
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
&#3627408465;&#3627408485;)&#3627409163;&#3627408479;
2
−&#3627409167;⋅2&#3627409163;&#3627408479;⋅&#3627408465;&#3627408485;=0
&#3627408451;⋅&#3627408479;−(&#3627408451;+
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
&#3627408465;&#3627408485;)&#3627408479;−2&#3627409167;⋅&#3627408465;&#3627408485;=0 ⟶−
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
&#3627408465;&#3627408485;=2&#3627409167;⋅&#3627408465;&#3627408485;
&#3627409167;=−
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;

&#3627408479;
2

&#3627408441;&#3627408476;&#3627408479; &#3627408467;&#3627408482;&#3627408473;&#3627408473;&#3627408486; &#3627408465;&#3627408466;&#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408477;&#3627408466;&#3627408465; &#3627408467;&#3627408473;&#3627408476;&#3627408484;,
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
=&#3627408464;&#3627408476;&#3627408475;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408481;
&#3627408454;&#3627408476;,&#3627409167;∝&#3627408479;
As the shear stress is zero at the centre of pipe, therefore, viscous forces are zero at the
centre and hence Bernoulli’s equation can be applied along the axis of the pipe.
In a Laminar flow through pipes, shear stress varies linearly from zero at the centre to
the maximum at the pipe wall.
Velocity Distribution
&#3627409167;=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
→ &#3627409167;=??????
&#3627408465;&#3627408482;
−&#3627408465;&#3627408479;
=−??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408479;

(&#3627408479;+&#3627408486;=&#3627408453;→ &#3627408465;&#3627408486;=−&#3627408465;&#3627408479;)

&#3627409167;=−
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;

&#3627408479;
2

Equating we get,

&#3627409173;&#3627408451;
&#3627409173;&#3627408485;

&#3627408479;
2
=−??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408479;

&#3627408465;&#3627408482;
&#3627408465;&#3627408479;
=
&#3627408479;
2??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
) ⟶ &#3627408465;&#3627408482;=
1
2??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408479;⋅&#3627408465;&#3627408479;
Integrating we get,
&#3627408482;=
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408479;
2
+&#3627408438;
&#3627408436;&#3627408481; &#3627408481;ℎ&#3627408466; &#3627408451;&#3627408470;&#3627408477;&#3627408466; &#3627408484;&#3627408462;&#3627408473;&#3627408473;,&#3627408479;=&#3627408453; & &#3627408482;=0
0=
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2
+&#3627408438;⟶ &#3627408438;=−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2

&#3627408482;=
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408479;
2

1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2

&#3627408482;=−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)[&#3627408453;
2
−&#3627408479;
2
]
(&#3627408473;&#3627408476;&#3627408464;&#3627408462;&#3627408473; &#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486;)&#3627408482;=−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2
⋅[1−
&#3627408479;
2
&#3627408453;
2
]
&#3627408458;&#3627408466; &#3627408468;&#3627408466;&#3627408481; &#3627408482;
&#3627408474;&#3627408462;&#3627408485; &#3627408484;ℎ&#3627408466;&#3627408475; &#3627408479;=0,
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;=−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2

&#3627408482;=&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅[1−
&#3627408479;
2
&#3627408453;
2
]

The velocity distribution is parabolic in Laminar flow through pipes.





Discharge

Let us calculate discharge through elemental ring,
&#3627408465;&#3627408452;=&#3627408482;⋅2&#3627409163;&#3627408479;⋅&#3627408465;&#3627408479;
&#3627408452;=∫&#3627408482;⋅2&#3627409163;&#3627408479;⋅&#3627408465;&#3627408479;
??????
0
=∫&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅[1−
&#3627408479;
2
&#3627408453;
2
]⋅2&#3627409163;&#3627408479;⋅&#3627408465;&#3627408479;
??????
0
=2&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;[
&#3627408479;
2
2

&#3627408479;
4
4&#3627408453;
2
]
0
??????

&#3627408452;=2&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;[
&#3627408453;
2
2

&#3627408453;
2
4
]=2&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅
&#3627408453;
2
4

&#3627408452;=
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅&#3627409163;&#3627408453;
2
2

&#3627408452;=
&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅&#3627408453;
2
2
=
&#3627409163;⋅&#3627408453;
2
2
(−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2
)
&#3627408452;=−
&#3627409163;
8??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
4

Average Velocity (&#3627408483;)
&#3627408452;=
&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅&#3627408453;
2
2

&#3627408452;=&#3627408436;⋅&#3627408483;=&#3627409163;&#3627408453;
2
⋅&#3627408483;
Equating we get,
&#3627409163;&#3627408453;
2
⋅&#3627408483;=
&#3627409163;⋅&#3627408482;
&#3627408474;&#3627408462;&#3627408485;⋅&#3627408453;
2
2

&#3627408483;=
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;
2

Pressure drop in a given length L

&#3627408483;=
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;
2
=
1
2
(−
1
4??????
(
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;
)⋅&#3627408453;
2
)
8??????&#3627408483;
&#3627408453;
2
&#3627409173;&#3627408485;=−&#3627409173;&#3627408451;
Integrating we get,
⟶∫
8??????&#3627408483;
&#3627408453;
2
&#3627409173;&#3627408485;
&#3627408485;1
&#3627408485;2
=∫−&#3627409173;&#3627408451;
&#3627408451;2
&#3627408451;1

8??????&#3627408483;
&#3627408453;
2
(&#3627408485;
2−&#3627408485;
1)=−(&#3627408451;
2−&#3627408451;
1)⟶
8??????&#3627408483;
&#3627408453;
2
⋅&#3627408447;=&#3627408451;
1−&#3627408451;
2
(&#3627408485;
2−&#3627408485;
1=&#3627408447;)
&#3627408451;
1−&#3627408451;
2=
8??????&#3627408483;&#3627408447;
&#3627408453;
2
=
8??????&#3627408483;&#3627408447;
(&#3627408439;2⁄)
2

&#3627408451;
1−&#3627408451;
2=
32??????&#3627408483;&#3627408447;
&#3627408439;
2

(??????=&#3627408483;&#3627408470;&#3627408480;&#3627408464;&#3627408476;&#3627408480;&#3627408470;&#3627408481;&#3627408486;,&#3627408483;=&#3627408462;&#3627408483;&#3627408466;&#3627408479;&#3627408462;&#3627408468;&#3627408466; &#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486;,&#3627408447;=&#3627408465;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408463;&#3627408484;⁄ &#3627408477;&#3627408476;&#3627408470;&#3627408475;&#3627408481;&#3627408480;,&#3627408453;=&#3627408479;&#3627408462;&#3627408465;&#3627408470;&#3627408482;&#3627408480; &#3627408476;&#3627408467; &#3627408477;&#3627408470;&#3627408477;&#3627408466;)
&#3627408451;
1−&#3627408451;
2
&#3627408588;
=ℎ
??????=
&#3627408467;⋅&#3627408447;⋅&#3627408483;
2
2&#3627408468;&#3627408439;
→ &#3627408451;
1−&#3627408451;
2=
&#3627409164;⋅&#3627408467;⋅&#3627408447;⋅&#3627408483;
2
2&#3627408439;

&#3627408451;
1−&#3627408451;
2=&#3627408588;⋅ℎ
??????=
32??????&#3627408483;&#3627408447;
&#3627408439;
2
(&#3627408467;&#3627408479;&#3627408476;&#3627408474; &#3627408477;&#3627408479;&#3627408466;&#3627408483;&#3627408470;&#3627408476;&#3627408482;&#3627408480; &#3627408465;&#3627408466;&#3627408479;&#3627408470;&#3627408483;&#3627408466;&#3627408465; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;)
Equating we get,
32??????&#3627408483;&#3627408447;
&#3627408439;
2
=
&#3627409164;⋅&#3627408467;⋅&#3627408447;⋅&#3627408483;
2
2&#3627408439;

&#3627408467;=
64
&#3627409164;&#3627408483;&#3627408439;
??????
=
64
&#3627408453;&#3627408466;

In Laminar flow through pipes, friction factor (f) will depend on Reynold’s Number.

Shear Factor (V
*)
&#3627409167;=−
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;

&#3627408479;
2

&#3627409167;
&#3627408476;=−
&#3627409173;&#3627408451;
&#3627409173;&#3627408485;

&#3627408453;
2
=−
(&#3627408451;
2−&#3627408451;
1)
(&#3627408485;
2−&#3627408485;
1)

&#3627408439;
4
=
&#3627408451;
2−&#3627408451;
1
&#3627408447;

&#3627408439;
4

&#3627408451;
1−&#3627408451;
2=&#3627408588;⋅ℎ
??????=
&#3627409164;⋅&#3627408467;⋅&#3627408447;⋅&#3627408483;
2
2&#3627408439;

&#3627408454;&#3627408482;&#3627408463;&#3627408480;&#3627408481;&#3627408470;&#3627408481;&#3627408482;&#3627408481;&#3627408470;&#3627408475;&#3627408468; (&#3627408451;
2−&#3627408451;
1) &#3627408470;&#3627408475; &#3627409167;
&#3627408476;,
&#3627409167;
&#3627408476;=
&#3627409164;⋅&#3627408467;⋅&#3627408447;⋅&#3627408483;
2
2&#3627408439;

&#3627408439;
4&#3627408447;

&#3627409167;
&#3627408476;=
&#3627409164;⋅&#3627408467;⋅&#3627408483;
2
8

&#3627409167;
&#3627408476;
&#3627409164;
=
&#3627408467;⋅&#3627408483;
2
8


&#3627409167;
&#3627408476;
&#3627409164;
=√
&#3627408467;
8
⋅&#3627408483;
&#3627408454;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408457;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; (√
&#3627409167;
&#3627408476;
&#3627409164;
)=&#3627408457;


&#3627408457;

=√
&#3627408467;
8
⋅&#3627408483;
BOUNDARY LAYER THEORY
Boundary layer theory was proposed by Prandtl in 1904.
When a real fluid flows past a solid object, the velocity of the fluid will be same that of object when it comes in
contact with the object. If the object is stationary, the fluid will also have zero velocity. Away from the object the
fluid velocity increases and at some distance from the object, the fluid velocity will be free stream velocity. This
distance from the object where there are velocity gradients is known as Boundary layer thickness and this region
is known as boundary layer region.
In the boundary layer region, the flow is viscous & rotational, as the flow is viscous in boundary layer region. As
the flow is non-viscous outside the boundary layer region, the Bernoulli’s equation can be applied.

Development of Boundary Layer over a flat Plate

When a real fluid flows past a flat plate, the velocity of fluid on plate will be same as that of the plate velocity. If
the plate is at rest, the fluid will also have zero velocity. The boundary layer thickness grows as the distance from
the leading-edge increases. Up to a certain distance from the leading edge the flow in Boundary layer is laminar.
As the laminar boundary layer grows instability occurs and the flow changes from laminar to turbulent through
transition. It’s found that even in turbulent boundary layer region close to the plate, the flow is laminar, this
region is known as laminar sub-layer region. Laminar sublayer region exists in turbulent boundary region.
Boundary Conditions

&#3627408436;&#3627408481; &#3627408485;=0→ &#3627409151;=0
&#3627408436;&#3627408481; &#3627408486;=0→ &#3627408482;=0
&#3627408436;&#3627408481; &#3627408486;=&#3627409151;→ &#3627408482;=&#3627408482;

&#3627408436;&#3627408481; &#3627408486;=&#3627409151;→
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=0
Boundary Layer thickness (δ)
It is the distance from the boundary to the point in y-direction, where the velocity is 99% of free stream velocity.
For all calculations, &#3627408436;&#3627408481; &#3627408486;=&#3627409151;→&#3627408482;= &#3627408482;

Displacement thickness (δ
*)

&#3627408474;̇
??????&#3627408465;&#3627408466;&#3627408462;&#3627408473;=&#3627409164;&#3627408436;&#3627408483;⃗=&#3627409164;⋅(&#3627408465;&#3627408486;⋅1)⋅&#3627408482;

&#3627408474;̇
&#3627408479;&#3627408466;&#3627408462;&#3627408473;=&#3627409164;⋅(&#3627408465;&#3627408486;⋅1)⋅&#3627408482;
&#3627408453;&#3627408466;&#3627408465;&#3627408482;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408470;&#3627408475; &#3627408474;&#3627408462;&#3627408480;&#3627408480; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408479;&#3627408462;&#3627408481;&#3627408466; &#3627408465;&#3627408482;&#3627408466; &#3627408481;&#3627408476; &#3627408437;&#3627408476;&#3627408482;&#3627408475;&#3627408465;&#3627408462;&#3627408479;&#3627408486; &#3627408473;&#3627408462;&#3627408486;&#3627408466;&#3627408479; &#3627408468;&#3627408479;&#3627408476;&#3627408484;&#3627408481;ℎ=&#3627408474;̇
??????&#3627408465;&#3627408466;&#3627408462;&#3627408473;−&#3627408474;̇
&#3627408479;&#3627408466;&#3627408462;&#3627408473;
&#3627408474;̇
??????&#3627408465;&#3627408466;&#3627408462;&#3627408473;−&#3627408474;̇
&#3627408479;&#3627408466;&#3627408462;&#3627408473;=&#3627409164;⋅&#3627408465;&#3627408486;⋅&#3627408482;
∞−&#3627409164;⋅&#3627408465;&#3627408486;⋅&#3627408482;=&#3627409164;⋅(&#3627408482;
∞−&#3627408482;) ⋅&#3627408465;&#3627408486;
&#3627408455;&#3627408476;&#3627408481;&#3627408462;&#3627408473; &#3627408474;&#3627408462;&#3627408480;&#3627408480; &#3627408479;&#3627408466;&#3627408465;&#3627408482;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475;=∫&#3627409164;⋅(&#3627408482;
∞−&#3627408482;) ⋅&#3627408465;&#3627408486;
&#3627409151;
0

Displacement thickness is the thickness by which boundary should be displaced in order to compensate for mass
flow rate due to boundary layer growth.
&#3627408455;&#3627408476;&#3627408481;&#3627408462;&#3627408473; &#3627408474;&#3627408462;&#3627408480;&#3627408480; &#3627408479;&#3627408466;&#3627408465;&#3627408482;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475;=∫&#3627409164;⋅(&#3627408482;
∞−&#3627408482;) ⋅&#3627408465;&#3627408486;
&#3627409151;
0
=20

&#3627409164;⋅(&#3627409151;

⋅1)⋅&#3627408482;
∞=20
&#3627409164;⋅(&#3627409151;

⋅1)∙&#3627408482;
∞=∫&#3627409164;⋅(&#3627408482;
∞−&#3627408482;)⋅&#3627408465;&#3627408486;
&#3627409151;
0

&#3627409151;

=∫(1−
&#3627408482;
&#3627408482;

)⋅&#3627408465;&#3627408486;
&#3627409151;
0

Momentum thickness (θ)
It is the distance by which boundary should be displaced in order to compensate the momentum due to boundary
layer growth.
&#3627409155;=∫
&#3627408482;
&#3627408482;

⋅(1−
&#3627408482;
&#3627408482;

)⋅&#3627408465;&#3627408486;
&#3627409151;
0

Energy thickness (δE)
It is the distance by which boundary should be displaced in order to compensate for the reduction in Kinetic
energy due to boundary layer growth.
&#3627409151;
&#3627408440;=∫
&#3627408482;
&#3627408482;

⋅(1−
&#3627408482;
2
&#3627408482;

2
)⋅&#3627408465;&#3627408486;
&#3627409151;
0

&#3627408452;) &#3627408457;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408465;&#3627408470;&#3627408480;&#3627408481;&#3627408479;&#3627408470;&#3627408463;&#3627408482;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408470;&#3627408475; &#3627408463;&#3627408476;&#3627408482;&#3627408475;&#3627408465;&#3627408462;&#3627408479;&#3627408486; &#3627408473;&#3627408462;&#3627408486;&#3627408466;&#3627408479; &#3627408470;&#3627408480; &#3627408468;&#3627408470;&#3627408483;&#3627408466;&#3627408475; &#3627408463;&#3627408486;
&#3627408482;
&#3627408482;

=
&#3627408486;
&#3627409151;
.
Displacement thickness(δ
*
)
&#3627409151;

=∫(1−
&#3627408482;
&#3627408482;

)⋅&#3627408465;&#3627408486;
&#3627409151;
0
=∫(1−
&#3627408486;
&#3627409151;
)⋅&#3627408465;&#3627408486;
&#3627409151;
0
=∫1⋅&#3627408465;&#3627408486;
&#3627409151;
0
−∫
&#3627408486;
&#3627409151;
⋅&#3627408465;&#3627408486;
&#3627409151;
0
=(&#3627409151;−0)−
1
&#3627409151;

(&#3627409151;
2
−0)
2
=&#3627409151;−
&#3627409151;
2
=
&#3627409151;
2

&#3627409151;

=
&#3627409151;
2

Momentum thickness
&#3627409155;=∫
&#3627408482;
&#3627408482;

(1−
&#3627408482;
&#3627408482;

)&#3627408465;&#3627408486;
&#3627409151;
0
=∫
&#3627408486;
&#3627409151;
(1−
&#3627408486;
&#3627409151;
)&#3627408465;&#3627408486;
&#3627409151;
0
=∫
&#3627408486;
&#3627409151;
&#3627408465;&#3627408486;
&#3627409151;
0
−∫
&#3627408486;
2
&#3627409151;
2
&#3627408465;&#3627408486;
&#3627409151;
0
=
1
&#3627409151;

(&#3627409151;
2
−0)
2

1
&#3627409151;
2

(&#3627409151;
3
−0)
3
=
&#3627409151;
2

&#3627409151;
3
=
&#3627409151;
6

&#3627409155;=
&#3627409151;
6

&#3627409151;>&#3627409151;

>&#3627409155;
Note
&#3627408455;ℎ&#3627408466; &#3627408480;ℎ&#3627408462;&#3627408477;&#3627408466; &#3627408467;&#3627408462;&#3627408464;&#3627408481;&#3627408476;&#3627408479; &#3627408476;&#3627408467; &#3627408462; &#3627408463;&#3627408476;&#3627408482;&#3627408475;&#3627408465;&#3627408462;&#3627408479;&#3627408486; &#3627408473;&#3627408462;&#3627408486;&#3627408466;&#3627408479; &#3627408470;&#3627408480; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408473; &#3627408481;&#3627408476; &#3627408443;=
&#3627409151;

&#3627409155;
,&#3627408481;ℎ&#3627408470;&#3627408480; &#3627408481;&#3627408466;&#3627408479;&#3627408474; &#3627408470;&#3627408480; &#3627408482;&#3627408480;&#3627408466;&#3627408465; &#3627408470;&#3627408475; &#3627408462;&#3627408475;&#3627408462;&#3627408473;&#3627408486;&#3627408480;&#3627408470;&#3627408480; &#3627408476;&#3627408467; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408480;&#3627408466;&#3627408477;&#3627408466;&#3627408479;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;.
For linear velocity profiles, the shape factor is 3.
Drag force (FD)
It is the force exerted by fluid on plate in direction parallel to relative motion. When angle of incidence of plate is
zero, then drag is due to shear only.

Von-Karman Integral equation
Assumptions
1. Steady flow
2. Incompressible flow
3. 2―D flow
4.
&#3627408465;&#3627408451;
&#3627408465;&#3627408485;
=0 (&#3627408455;ℎ&#3627408470;&#3627408480; &#3627408464;&#3627408476;&#3627408475;&#3627408465;&#3627408470;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408470;&#3627408480; &#3627408483;&#3627408462;&#3627408473;&#3627408470;&#3627408465; &#3627408476;&#3627408475;&#3627408473;&#3627408486; &#3627408467;&#3627408476;&#3627408479; &#3627408466;&#3627408485;&#3627408481;&#3627408466;&#3627408479;&#3627408475;&#3627408462;&#3627408473; &#3627408467;&#3627408473;&#3627408476;&#3627408484;&#3627408480;)
From Newton second law of motion, Von-Karman equation can be derived.
&#3627409167;
&#3627408476;
&#3627409164;&#3627408482;

2
=
&#3627408465;&#3627409155;
&#3627408465;&#3627408485;
→ &#3627408457;&#3627408476;&#3627408475;−&#3627408446;&#3627408462;&#3627408479;&#3627408474;&#3627408462;&#3627408475; &#3627408470;&#3627408475;&#3627408481;&#3627408466;&#3627408468;&#3627408479;&#3627408462;&#3627408473; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
( &#3627409167;
&#3627408476;→&#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408480;&#3627408480; &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; &#3627408476;&#3627408467; &#3627408477;&#3627408473;&#3627408462;&#3627408481;&#3627408466;,&#3627409155;→ &#3627408474;&#3627408476;&#3627408474;&#3627408466;&#3627408475;&#3627408481;&#3627408482;&#3627408474; &#3627408481;ℎ&#3627408470;&#3627408464;&#3627408472;&#3627408475;&#3627408466;&#3627408480;&#3627408480;,&#3627408485;→&#3627408465;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408467;&#3627408479;&#3627408476;&#3627408474; &#3627408473;&#3627408466;&#3627408462;&#3627408465;&#3627408470;&#3627408475;&#3627408468; &#3627408466;&#3627408465;&#3627408468;&#3627408466;)
Significance of Van-Karman equation
1. With the help of Van-Karman equation, Boundary layer thickness δ can be calculated.
2. The shear stress on the surface of plate can be calculated.
3. The drag force on the plate can be calculated.
&#3627408453;&#3627408466;&#3627408486;&#3627408475;&#3627408476;&#3627408473;&#3627408465;&#3627408480; &#3627408475;&#3627408482;&#3627408474;&#3627408463;&#3627408466;&#3627408479; &#3627408470;&#3627408480;
&#3627409164;&#3627408482;
∞&#3627408485;
??????
(&#3627408485; &#3627408470;&#3627408480; &#3627408481;ℎ&#3627408466; &#3627408465;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408467;&#3627408479;&#3627408476;&#3627408474; &#3627408481;ℎ&#3627408466; &#3627408473;&#3627408466;&#3627408462;&#3627408465;&#3627408470;&#3627408475;&#3627408468; &#3627408466;&#3627408465;&#3627408468;&#3627408466;)

For flow over the flat plate, if the Reynolds number is less than
5⨯10
5
, then the flow is taken as Laminar.
If the flow is greater than 5⨯10
5
, then the flow is taken as
turbulent.

Average Drag force coefficient (Cd)
&#3627408438;
&#3627408465;=
&#3627408441;
&#3627408439;
1
2
&#3627409164;⋅&#3627408436;⋅&#3627408482;

2

With the help of average drag force coefficient, drag force can be calculated.
Local drag coefficient (or) Skin friction coefficient (Cfx)
&#3627408438;
&#3627408467;&#3627408485;=
&#3627409167;
&#3627408476;
1
2
&#3627409164;⋅&#3627408482;

2

&#3627408452;) ??????&#3627408528;&#3627408531; &#3627408514; &#3627408535;&#3627408518;&#3627408525;&#3627408528;&#3627408516;&#3627408522;&#3627408533;&#3627408538; &#3627408529;&#3627408531;&#3627408528;&#3627408519;&#3627408522;&#3627408525;&#3627408518; &#3627408519;&#3627408528;&#3627408531; &#3627408514; &#3627408525;&#3627408514;&#3627408526;&#3627408522;&#3627408527;&#3627408514;&#3627408531; &#3627408515;&#3627408528;&#3627408534;&#3627408527;&#3627408517;&#3627408514;&#3627408531;&#3627408538; &#3627408525;&#3627408514;&#3627408538;&#3627408518;&#3627408531;
&#3627408534;
&#3627408534;

=
&#3627409361;&#3627408538;
&#3627409360;&#3627409209;

&#3627408538;
&#3627409361;
&#3627409360;&#3627409209;
&#3627409361;

Find boundary Layer thickness (δ), shear stress on surface of plate, Drag force, Average drag coefficient
in terms of Reynolds number?
→&#3627409155;=∫
&#3627408482;
&#3627408482;

⋅(1−
&#3627408482;
&#3627408482;

)⋅&#3627408465;&#3627408486;
&#3627409151;
0
→ &#3627409155;=∫(
3&#3627408486;
2&#3627409151;

&#3627408486;
3
2&#3627409151;
3
)⋅(1−(
3&#3627408486;
2&#3627409151;

&#3627408486;
3
2&#3627409151;
3
))⋅&#3627408465;&#3627408486;
&#3627409151;
0
⇒&#3627409155;=
39&#3627409151;
280


&#3627409167;
&#3627408476;
&#3627409164;&#3627408482;

2
=
&#3627408465;&#3627409155;
&#3627408465;&#3627408485;
=
&#3627408465;
&#3627408465;&#3627408485;
(
39&#3627409151;
280
)=
39
280
&#3627408465;&#3627409151;
&#3627408465;&#3627408485;
→ &#3627409167;
&#3627408476;=&#3627409164;&#3627408482;

2

39
280
&#3627408465;&#3627409151;
&#3627408465;&#3627408485;

&#3627409167;
&#3627408476;→&#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408480;&#3627408480; &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; &#3627408476;&#3627408467; &#3627408477;&#3627408473;&#3627408462;&#3627408481;&#3627408466; (&#3627408462;&#3627408481; &#3627408486;=0)
&#3627409167;(&#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408480;&#3627408480;)=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
→ &#3627409167;
&#3627408476;(&#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408480;&#3627408481;&#3627408479;&#3627408466;&#3627408480;&#3627408480; &#3627408476;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; &#3627408476;&#3627408467; &#3627408477;&#3627408473;&#3627408462;&#3627408481;&#3627408466;)=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
|
&#3627408486;=0

&#3627408482;=&#3627408482;
∞⋅(
3&#3627408486;
2&#3627409151;

&#3627408486;
3
2&#3627409151;
3
)
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
=&#3627408482;
∞⋅
&#3627408465;
&#3627408465;&#3627408486;
(
3&#3627408486;
2&#3627409151;

&#3627408486;
3
2&#3627409151;
3
)=&#3627408482;
∞⋅(
3
2&#3627409151;

3&#3627408486;
2
2&#3627409151;
3
)
&#3627409167;
&#3627408476;=??????⋅
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
|
&#3627408486;=0
=??????⋅&#3627408482;
∞⋅(
3
2&#3627409151;

3&#3627408486;
2
2&#3627409151;
3
)|
&#3627408486;=0
=??????⋅&#3627408482;
∞⋅
3
2&#3627409151;

&#3627409167;
&#3627408476;=??????⋅&#3627408482;
∞⋅
3
2&#3627409151;

&#3627408441;&#3627408479;&#3627408476;&#3627408474; ① & ②,(&#3627409167;
&#3627408476;=&#3627409164;&#3627408482;

2

39
280
&#3627408465;&#3627409151;
&#3627408465;&#3627408485;
& &#3627409167;
&#3627408476;=??????⋅&#3627408482;
∞⋅
3
2&#3627409151;
)
→??????⋅&#3627408482;
∞⋅
3
2&#3627409151;
=&#3627409164;&#3627408482;

2

39
280
&#3627408465;&#3627409151;
&#3627408465;&#3627408485;
→&#3627409151;⋅&#3627408465;&#3627409151;=
140⋅??????
13⋅&#3627409164;⋅&#3627408482;

⋅&#3627408465;&#3627408485;
Integrating we get,
∫&#3627409151;⋅&#3627408465;&#3627409151;=∫
140⋅??????
13⋅&#3627409164;⋅&#3627408482;

⋅&#3627408465;&#3627408485;→
&#3627409151;
2
2
=
140⋅??????⋅&#3627408485;
13⋅&#3627409164;⋅&#3627408482;

+&#3627408438;
&#3627408436;&#3627408481; &#3627408485;=0→&#3627409151;=0,&#3627408454;&#3627408482;&#3627408463;&#3627408480;&#3627408481;&#3627408470;&#3627408481;&#3627408482;&#3627408481;&#3627408470;&#3627408475;&#3627408468; &#3627408484;&#3627408466; &#3627408468;&#3627408466;&#3627408481; &#3627408438;=0

&#3627409151;
2
2
=
140⋅??????⋅&#3627408485;
13⋅&#3627409164;⋅&#3627408482;

⇒&#3627409151;=√
280
13

??????⋅&#3627408485;
&#3627409164;⋅&#3627408482;

=

280
13

&#3627408485;
2
&#3627409164;⋅&#3627408482;
∞.&#3627408485;
??????
=√
280
13

&#3627408485;
√&#3627408453;&#3627408466;
=
4.64⋅&#3627408485;
√&#3627408453;&#3627408466;

&#3627409151;=
4.64⋅&#3627408485;
√&#3627408453;&#3627408466;

&#3627408441;&#3627408479;&#3627408476;&#3627408474; &#3627409151;=√
280
13

??????⋅&#3627408485;
&#3627409164;⋅&#3627408482;

→ &#3627409151;∝√&#3627408485;→
&#3627409151;
1
&#3627409151;
2
=
√&#3627408485;
1
√&#3627408485;
2

As x increases → δ increases (As the distance from leading edge is increasing, Boundary layer thickness is also
increasing).
&#3627409167;
&#3627408476;=??????⋅&#3627408482;
∞⋅
3
&#3627409360;&#3627409209;
→ &#3627409167;
&#3627408476;=??????⋅&#3627408482;
∞⋅
3
2×(
4.64⋅&#3627408485;
√&#3627408453;&#3627408466;
)
=
0.323⋅??????⋅&#3627408482;

&#3627408485;
⋅√&#3627408453;&#3627408466;=
0.323⋅??????⋅&#3627408482;

&#3627408485;
⋅√
&#3627409164;⋅&#3627408482;
∞.&#3627408485;
??????

→&#3627409167;
&#3627408476;=0.323⋅√
??????⋅&#3627409164;⋅&#3627408482;

&#3627408485;
&#3627409167;
&#3627408476;=
0.323⋅??????⋅&#3627408482;

&#3627408485;
⋅√&#3627408453;&#3627408466;→&#3627408444;&#3627408475; &#3627408481;&#3627408466;&#3627408479;&#3627408474;&#3627408480; &#3627408476;&#3627408467; &#3627408479;&#3627408466;&#3627408486;&#3627408475;&#3627408476;&#3627408473;&#3627408465;&#3627408480; &#3627408475;&#3627408482;&#3627408474;&#3627408463;&#3627408466;&#3627408479;
&#3627409167;
&#3627408476;∝
1
√&#3627408485;

&#3627409167;
1
&#3627409167;
2
=
√&#3627408485;
2
√&#3627408485;
1

As the distance from the leading edge increases the shear stress decreases.

&#3627408441;
&#3627408439;→&#3627408439;&#3627408479;&#3627408462;&#3627408468; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466;=&#3627408454;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466; ×&#3627408436;&#3627408479;&#3627408466;&#3627408462;

&#3627408465;&#3627408441;
&#3627408439;=&#3627409167;
&#3627408476;×&#3627408437;⋅&#3627408465;&#3627408485;

→&#3627408441;
&#3627408439;=∫&#3627409167;
&#3627408476;×&#3627408437;⋅&#3627408465;&#3627408485;
??????
0
=∫
0.323⋅??????⋅&#3627408482;

&#3627408485;
√&#3627408453;&#3627408466;
&#3627408485;×&#3627408437;⋅&#3627408465;&#3627408485;
??????
0
=∫
0.323⋅??????⋅&#3627408482;

&#3627408485;

&#3627409164;⋅&#3627408482;
∞.&#3627408485;
??????
×&#3627408437;⋅&#3627408465;&#3627408485;
??????
0

⇒∫
0.323??????&#3627408482;
∞&#3627408437;
√&#3627408485;

&#3627409164;&#3627408482;

??????
&#3627408465;&#3627408485;
??????
0
=0.323⋅??????⋅&#3627408482;
∞√
&#3627409164;&#3627408482;

??????
(√&#3627408447;−0)=0.646⋅√
&#3627409164;⋅&#3627408482;
∞.&#3627408447;
??????
⋅&#3627408437;⋅??????⋅&#3627408482;

&#3627408441;
&#3627408439;=0.646⋅√&#3627408453;&#3627408466;
??????⋅&#3627408437;⋅??????⋅&#3627408482;
∞(&#3627408453;&#3627408466;
&#3627408485;=
&#3627409164;⋅&#3627408482;
∞.&#3627408485;
??????
,&#3627408453;&#3627408466;
??????=
&#3627409164;⋅&#3627408482;
∞.&#3627408447;
??????
)
&#3627408441;
&#3627408439;=0.646⋅√&#3627408453;&#3627408466;
??????⋅&#3627408437;⋅??????⋅&#3627408482;

&#3627408438;
&#3627408465;=
&#3627408441;
&#3627408439;
1
2
&#3627409164;⋅&#3627408436;⋅&#3627408482;

2
=
0.646⋅√&#3627408453;&#3627408466;
??????⋅&#3627408437;⋅??????⋅&#3627408482;

1
2
&#3627409164;⋅(&#3627408437;⋅&#3627408447;)⋅&#3627408482;

2
=
0.646⋅√
&#3627409164;⋅&#3627408482;
∞.&#3627408447;
??????
⋅&#3627408437;⋅??????⋅&#3627408482;

1
2
&#3627409164;⋅(&#3627408437;⋅&#3627408447;)⋅&#3627408482;

2
=
1.292

&#3627409164;⋅&#3627408482;
∞.&#3627408447;
??????

&#3627408438;
&#3627408465;=
1.292
√&#3627408453;&#3627408466;
??????

Boundary Layer Separation
When fluid flows through converging passage, velocity increase and pressure decrease i.e., fluid flows under
negative pressure gradient (favourable pressure gradient), this flow is also known as accelerating flow. The
boundary layer thickness decreases in this region due to increase in the velocity.
When fluid flows in diverging passage, velocity decreases and pressure increase i.e., fluid flows under positive
pressure gradient. If the angle of divergence is large, the retardation of fluid particles will be more and at some
point, the fluid particles may not support the flow and fluid may separate from its boundary and may reverse the
flow, this is known as Boundary Layer Separation.
As the velocity gradient is zero at separation point, the shear stress is zero at separation point.

Blasius Equation
Blasius developed non-linear third order ordinary differential equations for obtaining boundary layer solutions.
Laminar Turbulent
&#3627409151;=
5&#3627408485;
√&#3627408453;&#3627408466;
&#3627408485;
&#3627409151;=
5&#3627408485;
(&#3627408453;&#3627408466;
&#3627408485;)
15⁄

&#3627408438;
&#3627408467;&#3627408485;=
0.664
√&#3627408453;&#3627408466;
&#3627408485;
&#3627408438;
&#3627408467;&#3627408485;=
0.558
(&#3627408453;&#3627408466;
&#3627408485;)
15⁄

&#3627408438;
&#3627408439;=
1.328
√&#3627408453;&#3627408466;
??????
&#3627408438;
&#3627408439;=
0.074
(&#3627408453;&#3627408466;
&#3627408485;)
15⁄

Flow through pipes
When fluid flows through pipes it encounters various losses, these losses are classified into Major loss & minor loss.
Major loss
The head loss due to friction is known as major loss. It is given by Darcy- Weisbach equation.

??????=
&#3627408467;&#3627408447;&#3627408483;
2
2&#3627408468;&#3627408439;

(&#3627408452;=&#3627408436;⋅&#3627408483;=
&#3627409163;&#3627408439;
2
4
⋅&#3627408483;→ &#3627408483;=
4⋅&#3627408452;
&#3627409163;⋅&#3627408439;
2
)

??????=
&#3627408467;⋅&#3627408447;
2&#3627408468;&#3627408439;
⋅(
4&#3627408452;
&#3627409163;&#3627408439;
2
)
2
=
&#3627408467;⋅&#3627408447;
2&#3627408468;

16⋅&#3627408452;
2
&#3627409163;
2
⋅&#3627408439;
5


??????=
&#3627408467;⋅&#3627408447;⋅&#3627408452;
2
12⋅&#3627408439;
5

&#3627408448;&#3627408462;&#3627408471;&#3627408476;&#3627408479; &#3627408473;&#3627408476;&#3627408480;&#3627408480;&#3627408466;&#3627408480; &#3627408462;&#3627408479;&#3627408466; &#3627408462;&#3627408473;&#3627408480;&#3627408476; &#3627408464;&#3627408462;&#3627408473;&#3627408464;&#3627408482;&#3627408473;&#3627408462;&#3627408481;&#3627408466;&#3627408465; &#3627408463;&#3627408486; &#3627408438;ℎ&#3627408466;&#3627408487;&#3627408486;’&#3627408480; &#3627408467;&#3627408476;&#3627408479;&#3627408474;&#3627408482;&#3627408473;&#3627408462;→ &#3627408483;=&#3627408464;√??????⋅&#3627408470;
(??????→&#3627408443;&#3627408486;&#3627408465;&#3627408462;&#3627408482;&#3627408473;&#3627408470;&#3627408464; &#3627408474;&#3627408466;&#3627408462;&#3627408475; &#3627408465;&#3627408466;&#3627408477;&#3627408481;ℎ,&#3627408470;→&#3627408443;&#3627408486;&#3627408465;&#3627408479;&#3627408462;&#3627408482;&#3627408473;&#3627408470;&#3627408464; &#3627408480;&#3627408473;&#3627408476;&#3627408477;&#3627408466;)

??????(&#3627408443;&#3627408486;&#3627408465;&#3627408462;&#3627408482;&#3627408473;&#3627408470;&#3627408464; &#3627408474;&#3627408466;&#3627408462;&#3627408475; &#3627408465;&#3627408466;&#3627408477;&#3627408481;ℎ)=
&#3627408436;&#3627408479;&#3627408466;&#3627408462; &#3627408476;&#3627408467; &#3627408467;&#3627408473;&#3627408476;&#3627408484;
&#3627408458;&#3627408466;&#3627408481;&#3627408481;&#3627408466;&#3627408465; &#3627408451;&#3627408466;&#3627408479;&#3627408470;&#3627408474;&#3627408466;&#3627408481;&#3627408466;&#3627408479;
=
&#3627408436;
&#3627408477;
=
&#3627409163;&#3627408439;
2
4
&#3627409163;⋅&#3627408439;
=
&#3627408439;
4
→ ??????=
&#3627408439;
4

&#3627408470;(&#3627408443;&#3627408486;&#3627408465;&#3627408462;&#3627408482;&#3627408473;&#3627408470;&#3627408464; &#3627408480;&#3627408473;&#3627408476;&#3627408477;&#3627408466;)=&#3627408481;&#3627408462;&#3627408475;&#3627409155;=

??????
&#3627408447;
→&#3627408470;=

??????
&#3627408447;

&#3627408483;=&#3627408464;√??????⋅&#3627408470;=&#3627408464;⋅√
&#3627408439;
4


??????
&#3627408447;
→ &#3627408483;
2
=&#3627408464;
2

&#3627408439;×ℎ
??????
4⋅&#3627408447;


??????=
4&#3627408447;&#3627408483;
2
&#3627408464;
2
&#3627408439;


??????=
4&#3627408447;&#3627408483;
2
&#3627408464;
2
&#3627408439;
→&#3627408438;ℎ&#3627408466;&#3627408487;&#3627408486;

&#3627408480;&#3627408467;&#3627408476;&#3627408479;&#3627408474;&#3627408482;&#3627408473;&#3627408462; ,ℎ
??????=
&#3627408467;&#3627408447;&#3627408483;
2
2&#3627408468;&#3627408439;
→&#3627408439;&#3627408462;&#3627408479;&#3627408464;&#3627408486;−&#3627408458;&#3627408466;&#3627408470;&#3627408475;&#3627408463;&#3627408462;&#3627408464;ℎ &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
Equating Darcy & Chezy’s equations,
&#3627408467;&#3627408447;&#3627408483;
2
2&#3627408468;&#3627408439;
=
4&#3627408447;&#3627408483;
2
&#3627408464;
2
&#3627408439;

&#3627408464;=√
8&#3627408468;
&#3627408467;

Minor loss
Loss due to sudden expansion or sudden contraction, bend loss, entrance loss,
exit loss are known as Minor losses.

&#3627408451;
1
&#3627408588;
+
&#3627408483;
1
2
2&#3627408468;
=
&#3627408451;
2
&#3627408588;
+
&#3627408483;
2
2
2&#3627408468;
+ℎ
??????

&#3627408451;
1−&#3627408451;
2
&#3627408588;
+
&#3627408483;
1
2
−&#3627408483;
2
2
2&#3627408468;
=ℎ
??????&#3627408476;&#3627408480;&#3627408480; &#3627408465;&#3627408482;&#3627408466; &#3627408481;&#3627408476; &#3627408466;&#3627408485;&#3627408477;&#3627408462;&#3627408475;&#3627408480;??????&#3627408476;&#3627408475; ①
Assumptions
The pressure in the eddy region is assumed to equal to upstream pressure.
→??????&#3627408441;=&#3627408474;(
&#3627408483;−&#3627408482;
&#3627408481;
)=&#3627408474;̇⋅(&#3627408483;−&#3627408482;)=&#3627409164;⋅&#3627408452;⋅(&#3627408483;−&#3627408482;)
&#3627408451;
1⋅&#3627408436;
1+&#3627408451;
1⋅(&#3627408436;
2−&#3627408436;
1)−&#3627408451;
2⋅&#3627408436;
2=&#3627409164;⋅&#3627408452;⋅(&#3627408483;
2−&#3627408483;
1)
&#3627408436;
2(&#3627408451;
1−&#3627408451;
2)=&#3627409164;⋅&#3627408452;⋅(&#3627408483;
2−&#3627408483;
1)→
&#3627408451;
1−&#3627408451;
2
&#3627409164;
=
&#3627408452;⋅(&#3627408483;
2−&#3627408483;
1)
&#3627408436;
2

&#3627408451;
1−&#3627408451;
2
&#3627409164;
=
&#3627408452;
&#3627408436;
2
(&#3627408483;
2−&#3627408483;
1)=&#3627408483;
2(&#3627408483;
2−&#3627408483;
1)
Dividing both sides by g,
&#3627408451;
1−&#3627408451;
2
&#3627409164;&#3627408468;
=
&#3627408483;
2⋅(&#3627408483;
2−&#3627408483;
1)
&#3627408468;


&#3627408451;
1−&#3627408451;
2
&#3627408588;
=
&#3627408483;
2⋅(&#3627408483;
2−&#3627408483;
1)
&#3627408468;
…… ②
&#3627408454;&#3627408482;&#3627408463;&#3627408480;&#3627408481;&#3627408470;&#3627408481;&#3627408482;&#3627408481;&#3627408470;&#3627408475;&#3627408468;
&#3627408451;
1−&#3627408451;
2
&#3627408588;
&#3627408470;&#3627408475; ①,
&#3627408483;
2⋅(&#3627408483;
2−&#3627408483;
1)
&#3627408468;
+
&#3627408483;
1
2
−&#3627408483;
2
2
2&#3627408468;
=ℎ
??????
→ℎ
??????=
(&#3627408483;
1−&#3627408483;
2)
2
2&#3627408468;

In deriving this equation Bernoulli’s equation, Momentum equation, Continuity equation is used.

??????⋅&#3627408466;&#3627408485;&#3627408477;&#3627408475;=
(&#3627408483;
1−&#3627408483;
2)
2
2&#3627408468;
=
&#3627408483;
1
2
2&#3627408468;
(1−
&#3627408483;
2
&#3627408483;
1
)
2
=
&#3627408483;
1
2
2&#3627408468;
(1−
&#3627408436;
1
&#3627408436;
2
)
2
(&#3627408436;
1⋅&#3627408483;
1=&#3627408436;
2⋅&#3627408483;
2→
&#3627408483;
2
&#3627408483;
1
=
&#3627408436;
1
&#3627408436;
2
)
→ℎ
??????⋅&#3627408466;&#3627408485;&#3627408477;&#3627408475;=
&#3627408483;
1
2
2&#3627408468;
(1−
&#3627408436;
1
&#3627408436;
2
)
2

Exit Loss
It’s similar to sudden expansion, with A2 → ∞.

??????=
&#3627408483;
1
2
2&#3627408468;
(1−
&#3627408436;
1
&#3627408436;
2
)
2


??????⋅&#3627408466;&#3627408485;??????&#3627408481;=
&#3627408483;
1
2
2&#3627408468;
(1−
&#3627408436;
1

)
2
=
&#3627408483;
1
2
2&#3627408468;
→ ℎ
??????⋅&#3627408466;&#3627408485;??????&#3627408481;=
&#3627408482;
2
2&#3627408468;

Sudden Contraction

&#3627408438;&#3627408476;&#3627408466;&#3627408467;&#3627408467;&#3627408470;&#3627408464;&#3627408470;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408438;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (&#3627408438;
&#3627408464;)=
&#3627408436;
&#3627408464;
&#3627408436;
2


??????=
(&#3627408483;
1−&#3627408483;
2)
2
2&#3627408468;


??????⋅&#3627408438;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;??????&#3627408476;&#3627408475;=
(&#3627408483;
&#3627408464;−&#3627408483;
2)
2
2&#3627408468;
=
&#3627408483;
2
2
2&#3627408468;
(
&#3627408483;
&#3627408464;
&#3627408483;
2
−1)
2
=
&#3627408483;
2
2
2&#3627408468;
(
&#3627408436;
2
&#3627408436;
&#3627408464;
−1)
2

(&#3627408436;
&#3627408464;⋅&#3627408483;
&#3627408464;=&#3627408436;
2⋅&#3627408483;
2)
(&#3627408436;
2=&#3627408438;
&#3627408464;×&#3627408436;
&#3627408464;→
&#3627408436;
2
&#3627408436;
&#3627408464;
=
1
&#3627408438;
&#3627408464;
)

??????⋅&#3627408438;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;??????&#3627408476;&#3627408475;=
&#3627408483;
2
2
2&#3627408468;
(
1
&#3627408438;
&#3627408464;
−1)
2

&#3627408444;&#3627408467; &#3627408481;ℎ&#3627408466; &#3627408464;&#3627408476;&#3627408466;&#3627408467;&#3627408467;&#3627408470;&#3627408464;&#3627408470;&#3627408466;&#3627408475;&#3627408481; &#3627408476;&#3627408467; &#3627408464;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; (&#3627408438;&#3627408464;)&#3627408470;&#3627408480; &#3627408475;&#3627408476;&#3627408481; &#3627408468;&#3627408470;&#3627408483;&#3627408466;&#3627408475; &#3627408481;ℎ&#3627408466;&#3627408475; &#3627408480;&#3627408482;&#3627408465;&#3627408465;&#3627408466;&#3627408475; &#3627408464;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408473;&#3627408476;&#3627408480;&#3627408480;&#3627408466;&#3627408480; &#3627408462;&#3627408479;&#3627408466; &#3627408481;&#3627408462;&#3627408472;&#3627408466;&#3627408475; &#3627408462;&#3627408480;
0.5⋅&#3627408483;
2
2
2&#3627408468;
,
&#3627408484;ℎ&#3627408466;&#3627408479;&#3627408466; &#3627408483;
2 &#3627408470;&#3627408480; &#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408470;&#3627408475; &#3627408480;&#3627408474;&#3627408462;&#3627408473;&#3627408473;&#3627408466;&#3627408479; &#3627408465;&#3627408470;&#3627408462;&#3627408474;&#3627408466;&#3627408481;&#3627408466;&#3627408479; &#3627408477;&#3627408470;&#3627408477;&#3627408466;.
Entrance Loss
&#3627408444;&#3627408481; &#3627408470;&#3627408480; &#3627408480;&#3627408470;&#3627408474;&#3627408470;&#3627408473;&#3627408462;&#3627408479; &#3627408481;&#3627408476; &#3627408480;&#3627408482;&#3627408465;&#3627408465;&#3627408466;&#3627408475; &#3627408464;&#3627408476;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408464;&#3627408481;&#3627408470;&#3627408476;&#3627408475;,&#3627408481;ℎ&#3627408466;&#3627408479;&#3627408466;&#3627408467;&#3627408476;&#3627408479;&#3627408466;,&#3627408466;&#3627408475;&#3627408481;&#3627408479;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408473;&#3627408476;&#3627408480;&#3627408480; &#3627408470;&#3627408480; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408473; &#3627408481;&#3627408476;
0.5⋅&#3627408483;
2
2&#3627408468;
,&#3627408483;→&#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408470;&#3627408475; &#3627408477;&#3627408470;&#3627408477;&#3627408466;.

Bend Loss
&#3627408437;&#3627408466;&#3627408475;&#3627408465; &#3627408447;&#3627408476;&#3627408480;&#3627408480;&#3627408466;&#3627408480; &#3627408462;&#3627408479;&#3627408466; &#3627408468;&#3627408470;&#3627408483;&#3627408466;&#3627408475; &#3627408463;&#3627408486; (ℎ
??????⋅&#3627408437;&#3627408466;&#3627408475;&#3627408465;=
&#3627408446;&#3627408483;
2
2&#3627408468;
),
&#3627408458;ℎ&#3627408466;&#3627408479;&#3627408466; &#3627408483;→&#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486; &#3627408476;&#3627408467; &#3627408477;&#3627408470;&#3627408477;&#3627408466; &#3627408462;&#3627408475;&#3627408465; &#3627408446;→&#3627408465;&#3627408466;&#3627408477;&#3627408466;&#3627408475;&#3627408465;&#3627408480; &#3627408476;&#3627408475; &#3627408462;&#3627408475;&#3627408468;&#3627408473;&#3627408466; &#3627408476;&#3627408467; &#3627408463;&#3627408466;&#3627408475;&#3627408465; &#3627408462;&#3627408475;&#3627408465; &#3627408479;&#3627408462;&#3627408465;&#3627408470;&#3627408482;&#3627408480; &#3627408476;&#3627408467; &#3627408464;&#3627408482;&#3627408479;&#3627408483;&#3627408462;&#3627408481;&#3627408482;&#3627408479;&#3627408466; &#3627408476;&#3627408467; &#3627408463;&#3627408466;&#3627408475;&#3627408465;.
Hydraulic Gradient Line & Total Gradient Line (HGL & UGL)
Hydraulic Gradient Line
The line joining piezometric heads at various points in a flow is known as hydraulic gradient line. If the pipe is
horizontal and of uniform diameter. HGL represents pressure variation.
&#3627408451;&#3627408470;&#3627408466;&#3627408487;&#3627408476;&#3627408474;&#3627408466;&#3627408481;&#3627408479;&#3627408470;&#3627408464; ℎ&#3627408466;&#3627408462;&#3627408465;=
&#3627408451;
&#3627408588;
+&#3627408487;

Total Gradient Line
The line joining total heads at various points in a flow is known as total energy line.
&#3627408455;&#3627408476;&#3627408481;&#3627408462;&#3627408473; ℎ&#3627408466;&#3627408462;&#3627408465;=
&#3627408451;
&#3627408588;
+&#3627408487;+
&#3627408483;
2
2&#3627408468;

The distance between TEL & HGL gives velocity head.


In a flow hydraulic gradient line can rise or fall, but total energy line can never rise as long as there I no external
energy input i.e., total energy line will rise in case of pumps & compressors.
Pipes in Series


&#3627408452;
1=&#3627408452;
2=&#3627408452;
3=&#3627408452;
4=&#3627408452;

??????=
&#3627408467;⋅&#3627408473;
1⋅&#3627408452;
2
12⋅&#3627408465;
1
5
+
&#3627408467;⋅&#3627408473;
2⋅&#3627408452;
2
12⋅&#3627408465;
2
5
+
&#3627408467;⋅&#3627408473;
3⋅&#3627408452;
2
12⋅&#3627408465;
3
5
+
&#3627408467;⋅&#3627408473;
4⋅&#3627408452;
2
12⋅&#3627408465;
4
5
+⋯

??????=ℎ
&#3627408473;1
+ℎ
&#3627408473;2
+ℎ
&#3627408473;3
+ℎ
&#3627408473;4
+⋯

Equivalent Pipe
A pipe of uniform diameter is set to be equivalent to compound pipe, when the discharge and the head losses are
same in both pipes.
&#3627408467;⋅&#3627408473;
&#3627408466;⋅&#3627408452;
2
12⋅&#3627408465;
&#3627408466;
5
=
&#3627408467;⋅&#3627408473;
1⋅&#3627408452;
2
12⋅&#3627408465;
1
5
+
&#3627408467;⋅&#3627408473;
2⋅&#3627408452;
2
12⋅&#3627408465;
2
5
+
&#3627408467;⋅&#3627408473;
3⋅&#3627408452;
2
12⋅&#3627408465;
3
5
+⋯
(&#3627408473;
&#3627408466;→&#3627408440;&#3627408478;&#3627408482;&#3627408470;&#3627408483;&#3627408462;&#3627408473;&#3627408466;&#3627408475;&#3627408481; &#3627408473;&#3627408466;&#3627408475;&#3627408468;&#3627408481;ℎ,&#3627408465;
&#3627408466;→&#3627408440;&#3627408478;&#3627408482;&#3627408470;&#3627408483;&#3627408462;&#3627408473;&#3627408466;&#3627408475;&#3627408481; &#3627408465;&#3627408470;&#3627408462;&#3627408474;&#3627408466;&#3627408481;&#3627408466;&#3627408479;)
&#3627408473;
&#3627408466;
&#3627408465;
&#3627408466;
5
=
&#3627408473;
1
&#3627408465;
1
5
+
&#3627408473;
2
&#3627408465;
2
5
+
&#3627408473;
3
&#3627408465;
3
5
+⋯ → &#3627408439;&#3627408482;&#3627408477;&#3627408470;&#3627408481;&#3627408480; &#3627408466;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475;
In Dupits equation minor losses are neglected.
Pipes in Parallel
Parallel connection is used for increasing discharge


&#3627408451;
&#3627408462;
&#3627408588;
+
&#3627408483;
&#3627408462;
2
2&#3627408468;
+&#3627408461;
&#3627408462;=
&#3627408451;
&#3627408463;
&#3627408588;
+
&#3627408483;
&#3627408463;
2
2&#3627408468;
+&#3627408461;
&#3627408463;+ℎ
??????1
&#3627408451;
&#3627408462;
&#3627408588;
+
&#3627408483;
&#3627408462;
2
2&#3627408468;
+&#3627408461;
&#3627408462;=
&#3627408451;
&#3627408463;
&#3627408588;
+
&#3627408483;
&#3627408463;
2
2&#3627408468;
+&#3627408461;
&#3627408463;+ℎ
??????2

??????1=ℎ
??????2
Equivalent Pipe (Parallel)



??????⋅&#3627408466;=
&#3627408467;⋅&#3627408473;
&#3627408466;⋅&#3627408452;
2
12⋅&#3627408465;
&#3627408466;
5


‘n’ Similar pipes are connected in parallel.



??????=&#3627408467;⋅&#3627408447;⋅(
&#3627408452;
&#3627408475;
)
2

1
12⋅&#3627408465;
5
=
&#3627408467;⋅&#3627408473;⋅&#3627408452;
2
12⋅&#3627408475;
2
⋅&#3627408465;
5


??????⋅&#3627408466;=ℎ
??????
&#3627408467;⋅&#3627408473;
&#3627408466;⋅&#3627408452;
2
12⋅&#3627408465;
&#3627408466;
5
=
&#3627408467;⋅&#3627408473;⋅&#3627408452;
2
12⋅&#3627408475;
2
⋅&#3627408465;
5


&#3627408473;
&#3627408466;
&#3627408465;
&#3627408466;
5
=
&#3627408473;
&#3627408475;
2
⋅&#3627408465;
5
(&#3627408473;
&#3627408466;=&#3627408473;)
&#3627408465;
&#3627408466;
5
=&#3627408475;
2
⋅&#3627408465;
5
→ &#3627408465;
&#3627408466;=&#3627408475;
2/5
⋅&#3627408465;

Power transmission through Pipes
&#3627408451;
&#3627408481;ℎ&#3627408466;&#3627408476;&#3627408479;&#3627408466;&#3627408481;??????&#3627408464;&#3627408462;&#3627408473;=&#3627408588;⋅&#3627408452;⋅&#3627408443;
&#3627408451;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=&#3627408588;⋅&#3627408452;⋅(&#3627408443;−ℎ
??????)
&#3627409154;=
&#3627408451;
&#3627408462;&#3627408464;&#3627408481;
&#3627408451;
&#3627408481;ℎ

&#3627409154;=
&#3627408588;.&#3627408452;⋅(&#3627408443;−ℎ
??????)
&#3627408588;⋅&#3627408452;⋅&#3627408443;

→&#3627409154;=
&#3627408443;−ℎ
??????
&#3627408443;


Conditions for Maximum Power transmission
→&#3627408451;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=&#3627408588;⋅&#3627408452;⋅(&#3627408443;−ℎ
??????)
→&#3627408451;
&#3627408462;&#3627408464;&#3627408481;&#3627408482;&#3627408462;&#3627408473;=&#3627408588;⋅&#3627408452;⋅(&#3627408443;−ℎ
??????)=&#3627408588;⋅&#3627408452;⋅(&#3627408443;−
&#3627408467;⋅&#3627408473;⋅&#3627408452;
2
12⋅&#3627408465;
5
)=&#3627408588;⋅(&#3627408452;⋅&#3627408443;−
&#3627408467;⋅&#3627408473;⋅&#3627408452;
3
12⋅&#3627408465;
5
)
&#3627408441;&#3627408476;&#3627408479; &#3627408448;&#3627408462;&#3627408485;&#3627408470;&#3627408474;&#3627408482;&#3627408474; &#3627408451;&#3627408476;&#3627408484;&#3627408466;&#3627408479;,
&#3627408465;&#3627408451;
&#3627408462;&#3627408464;&#3627408481;
&#3627408465;&#3627408452;
=0
&#3627408465;&#3627408451;
&#3627408462;&#3627408464;&#3627408481;
&#3627408465;&#3627408452;
=&#3627408588;⋅(1⋅&#3627408443;−
&#3627408467;⋅&#3627408473;⋅3⋅&#3627408452;
2
12⋅&#3627408465;
5
)=&#3627408588;⋅(&#3627408443;−
&#3627408467;⋅&#3627408473;⋅&#3627408452;
2
4⋅&#3627408465;
5
)=0
&#3627408443;−3.(
&#3627408467;⋅&#3627408473;⋅&#3627408452;
2
12⋅&#3627408465;
5
)=0→ &#3627408443;−3⋅ℎ
??????=0
&#3627408443;=3⋅ℎ
??????
→&#3627409154;
&#3627408474;&#3627408462;&#3627408485;=
&#3627408443;−ℎ
??????
&#3627408443;
=
3⋅ℎ
??????−ℎ
??????
3⋅ℎ
??????
=
2
3

&#3627409154;
&#3627408474;&#3627408462;&#3627408485;=0.667

HYDROSTATIC FORCES
Hydrostatic forces on Plane surfaces
Inclined Surfaces

Taking a small elemental area dA, we can calculate force on the small element and the total force can be
calculated by integrating.
&#3627408455;ℎ&#3627408466;&#3627408479;&#3627408466;&#3627408467;&#3627408476;&#3627408479;&#3627408466;,&#3627408481;&#3627408476;&#3627408481;&#3627408462;&#3627408473; ℎ&#3627408486;&#3627408465;&#3627408479;&#3627408476;&#3627408480;&#3627408481;&#3627408462;&#3627408481;&#3627408470;&#3627408464; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466; &#3627408470;&#3627408480; &#3627408441;=&#3627408588;⋅&#3627408436;⋅&#3627408485;̅,
&#3627408436;→ &#3627408436;&#3627408479;&#3627408466;&#3627408462; &#3627408476;&#3627408467; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466;,&#3627408485;̅→&#3627408483;&#3627408466;&#3627408479;&#3627408481;&#3627408470;&#3627408464;&#3627408462;&#3627408473; &#3627408465;&#3627408470;&#3627408480;&#3627408481;&#3627408462;&#3627408475;&#3627408464;&#3627408466; &#3627408476;&#3627408467; &#3627408438;&#3627408466;&#3627408475;&#3627408481;&#3627408479;&#3627408466; &#3627408476;&#3627408467; &#3627408468;&#3627408479;&#3627408462;&#3627408483;&#3627408470;&#3627408481;&#3627408486; &#3627408467;&#3627408479;&#3627408476;&#3627408474; &#3627408467;&#3627408479;&#3627408466;&#3627408466; &#3627408480;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466;.
&#3627408451;=&#3627409164;⋅&#3627408468;⋅&#3627408485;̅=&#3627408588;⋅&#3627408485;̅→ &#3627408441;=&#3627408451;⋅&#3627408436;=&#3627408588;⋅&#3627408485;̅⋅&#3627408436;

Centre of Pressure
It’s the point through which total hydro static force is supposed to be acting.

Case-1 (Inclined Surface)
From the principle of Moments, the centre of pressure can be calculated,
&#3627408485;
&#3627408464;⋅&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
&#3627409155;
&#3627408444;
&#3627408442;&#3627408442;=
&#3627408463;⋅&#3627408465;
3
12
,&#3627408436;=&#3627408463;⋅&#3627408465;
IGG is the moment of Inertia about centroidal axis, which is parallel to OO’.
θ is the angle made by surface with respect to free surface.
The centre of pressure is below C.G because the pressure increases with depth.
Case-2 (Plane Vertical surface)
Put θ=90ᵒ in case 1
&#3627408441;=&#3627408588;⋅&#3627408436;⋅&#3627408485;̅
&#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
&#3627409155;→ &#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
90ᵒ
→ &#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅


Case-3 (Plane Horizontal surface)

Put θ=0ᵒ in case 1
&#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
&#3627409155;→ &#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
0ᵒ→ &#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅



Case Force Centre point
Inclined &#3627408588;Ax̅
&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅
⋅&#3627408480;&#3627408470;&#3627408475;
2
&#3627409155;
Vertical &#3627408588;Ax̅
&#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅+
&#3627408444;
&#3627408442;&#3627408442;
&#3627408436;⋅&#3627408485;̅

Horizontal &#3627408588;Ax̅ &#3627408485;
&#3627408464;.&#3627408477;=&#3627408485;̅

Hydrostatic force on Curved surfaces

&#3627408465;&#3627408441;=&#3627408451;⋅&#3627408465;&#3627408436;→ &#3627408465;&#3627408441;=&#3627409164;⋅&#3627408468;⋅&#3627408485;⋅&#3627408465;&#3627408436;
&#3627408465;&#3627408441;
&#3627408443;=&#3627408465;&#3627408441;⋅&#3627408480;&#3627408470;&#3627408475;&#3627409155;=&#3627409164;⋅&#3627408468;⋅&#3627408485;⋅&#3627408465;&#3627408436;⋅&#3627408480;&#3627408470;&#3627408475;&#3627409155;
The horizontal component of force on curved surface is equal to hydrostatic force on vertical projection area, and
this force acts at the centre of pressure of corresponding area.
&#3627408465;&#3627408441;
&#3627408483;=&#3627408465;&#3627408441;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;
&#3627408465;&#3627408441;
&#3627408483;=&#3627409164;⋅&#3627408468;⋅&#3627408485;⋅&#3627408465;&#3627408436;⋅&#3627408464;&#3627408476;&#3627408480;&#3627409155;=&#3627409164;⋅&#3627408468;⋅(&#3627408485;⋅&#3627408465;&#3627408436;&#3627408464;&#3627408476;&#3627408480;&#3627409155;)=&#3627409164;⋅&#3627408468;⋅&#3627408457;=&#3627408474;&#3627408468;
&#3627408465;&#3627408441;
&#3627408483;=&#3627408484;&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408467;&#3627408473;&#3627408482;&#3627408470;&#3627408465;
The vertical component of force on the surface is equal to weight of the liquid contained by curved surface taken
up to free surface and this weight will act from the centre of gravity of corresponding weight.
Special Cases

Turbulent flow
In turbulent flow, as there is a continuous mixing of fluid particles, velocity fluctuates continuously. Hence no
turbulent flow is purely steady.
In turbulent flow the shear stress is due to fluctuation of velocity in flow as well as in the transverse direction.
Head loss in turbulent is proportional to (v
1.75
to v
2
), where as in laminar flow head loss is proportional to v.
Boussinesq equation
&#3627409167;=??????
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
+&#3627409154;
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
(&#3627409154;=&#3627408466;&#3627408465;&#3627408465;&#3627408486; &#3627408483;&#3627408470;&#3627408480;&#3627408464;&#3627408476;&#3627408480;&#3627408470;&#3627408481;&#3627408486;)

It’s very difficult to find eddy viscosity. Hence this equation is not used.
Reynold developed an equation for turbulent shear stress, τ = ρ⋅ u’⋅ v’, where u’ & v’ are fluctuating component of
velocity in x & y directions respectively.
Prandtl’s mixing theory
Mixing length is that length in transverse direction, where in fluid particles after colliding lose excess momentum
and reach momentum of new region. According to Prandtl mixing length ‘l’ is equal to 0.4y, where y is distance
measured from pipe wall.
At the pipe wall mixing length is zero.
&#3627408482;

=&#3627408483;

=&#3627408473;⋅
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;

&#3627409167;=&#3627409164;⋅&#3627408482;

⋅&#3627408483;

=&#3627409164;⋅(&#3627408473;⋅
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)⋅(&#3627408473;⋅
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)=&#3627409164;⋅&#3627408473;
2
⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
2

&#3627409167;
&#3627409164;
=&#3627408473;
2
⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
2
→ √
&#3627409167;
&#3627409164;
=&#3627408473;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)
&#3627408458;&#3627408466; &#3627408472;&#3627408475;&#3627408476;&#3627408484; &#3627408481;ℎ&#3627408462;&#3627408481; √
&#3627409167;
&#3627409164;
=&#3627408457;

(&#3627408480;ℎ&#3627408466;&#3627408462;&#3627408479; &#3627408483;&#3627408466;&#3627408473;&#3627408476;&#3627408464;&#3627408470;&#3627408481;&#3627408486;)
&#3627408457;

=&#3627408473;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)=0.4&#3627408486;⋅(
&#3627408465;&#3627408482;
&#3627408465;&#3627408486;
)(&#3627408473;=4&#3627408486;)
&#3627408457;

0.4
×
&#3627408465;&#3627408486;
&#3627408486;
=&#3627408465;&#3627408482;
Integrating,

&#3627408457;

0.4
×
&#3627408465;&#3627408486;
&#3627408486;
=∫&#3627408465;&#3627408482;
&#3627408482;=(
5
2
&#3627408457;

⋅&#3627408473;&#3627408475;&#3627408486;)+&#3627408438;
The velocity distribution in turbulent flow is logarithmic nature.

&#3627408455;ℎ&#3627408466; &#3627408473;&#3627408462;&#3627408474;&#3627408470;&#3627408475;&#3627408462;&#3627408479; &#3627408480;&#3627408482;&#3627408463;−&#3627408473;&#3627408462;&#3627408486;&#3627408466;&#3627408479; &#3627408481;ℎ&#3627408470;&#3627408464;&#3627408472;&#3627408475;&#3627408466;&#3627408480;&#3627408480; ‘&#3627409151;’ &#3627408470;&#3627408480;
11.6⋅&#3627408483;
&#3627408457;

(&#3627408477;&#3627408470;&#3627408477;&#3627408466;&#3627408480;)&#3627408462;&#3627408475;&#3627408465; &#3627409151;

=
5⋅&#3627408483;
&#3627408457;

(&#3627408477;&#3627408473;&#3627408462;&#3627408481;&#3627408466;&#3627408480;)
&#3627408444;&#3627408467; &#3627408472; &#3627408470;&#3627408480; &#3627408462;&#3627408483;&#3627408466;&#3627408479;&#3627408462;&#3627408468;&#3627408466; ℎ&#3627408466;&#3627408470;&#3627408468;ℎ&#3627408481; &#3627408476;&#3627408467; &#3627408479;&#3627408476;&#3627408482;&#3627408468;ℎ&#3627408475;&#3627408466;&#3627408480;&#3627408480;,&#3627408481;ℎ&#3627408466;&#3627408475;
&#3627408472;
&#3627409151;

<0.25,&#3627408481;ℎ&#3627408466;&#3627408475; &#3627408481;ℎ&#3627408462;&#3627408481; &#3627408477;&#3627408470;&#3627408477;&#3627408466; &#3627408470;&#3627408480; &#3627408480;&#3627408474;&#3627408476;&#3627408476;&#3627408481;ℎ &#3627408477;&#3627408470;&#3627408477;&#3627408466;.
&#3627408444;&#3627408467;
&#3627408472;
&#3627409151;′
>6,&#3627408481;ℎ&#3627408466;&#3627408475; &#3627408481;ℎ&#3627408466; &#3627408477;&#3627408470;&#3627408477;&#3627408466; &#3627408470;&#3627408480; &#3627408479;&#3627408476;&#3627408482;&#3627408468;ℎ &#3627408477;&#3627408470;&#3627408477;&#3627408466;.
&#3627408444;&#3627408467; 0.25<
&#3627408472;
&#3627409151;
<6,&#3627408470;&#3627408481; &#3627408470;&#3627408480; &#3627408481;&#3627408479;&#3627408462;&#3627408475;&#3627408480;&#3627408470;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627408477;&#3627408470;&#3627408477;&#3627408466;.
&#3627408482;−&#3627408483;
&#3627408457;

=5.75⋅&#3627408473;&#3627408476;&#3627408468;
10(
&#3627408486;
&#3627408453;
)+3.75
u→ local velocity, v→ average velocity, V
*
→ Shear velocity, y→ displacement from pipe walls, R→ pipe radius.
Equation valid for both rough & smooth pipes.
Note
&#3627408440;&#3627408478;&#3627408482;&#3627408462;&#3627408481;&#3627408470;&#3627408476;&#3627408475; &#3627409167;
&#3627408476;=
&#3627409164;⋅&#3627408467;⋅&#3627408483;
2
8
&#3627408470;&#3627408480; &#3627408483;&#3627408462;&#3627408473;&#3627408470;&#3627408465; &#3627408467;&#3627408476;&#3627408479; &#3627408481;&#3627408482;&#3627408479;&#3627408463;&#3627408482;&#3627408473;&#3627408466;&#3627408475;&#3627408481; &#3627408467;&#3627408473;&#3627408476;&#3627408484; &#3627408462;&#3627408473;&#3627408480;&#3627408476;.
At the centre y=R, u=umax.
Substituting in equation,
&#3627408482;
&#3627408474;&#3627408462;&#3627408485; −&#3627408483;
&#3627408457;

=5.75⋅&#3627408473;&#3627408476;&#3627408468;
10(
&#3627408453;
&#3627408453;
)+3.75→
&#3627408482;
&#3627408474;&#3627408462;&#3627408485; −&#3627408483;
&#3627408457;

=0+3.75→ &#3627408482;
&#3627408474;&#3627408462;&#3627408485;−&#3627408483;=3.75⋅&#3627408457;


&#3627409167;
&#3627408476;=
&#3627409164;⋅&#3627408467;⋅&#3627408483;
2
8
→√
&#3627409167;
&#3627408476;
&#3627409164;
=√
&#3627408467;⋅&#3627408483;
2
8
=√
&#3627408467;
8
⋅&#3627408483;→ √
&#3627409167;
&#3627408476;
&#3627409164;
=&#3627408457;

=√
&#3627408467;
8
⋅&#3627408483;
Substituting V
* in umax equation,
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;−&#3627408483;=3.75⋅√
&#3627408467;
8
⋅&#3627408483;
&#3627408482;
&#3627408474;&#3627408462;&#3627408485;
&#3627408483;
=1+1.326√&#3627408467;
DIMENSIONAL ANALYSIS
There are 2 methods of grouping, i.e., Rayleigh’s method and Buckingham’s pi theorem.
Rayleigh’s method
For a laminar flow in a pipe, the pressure drop ΔP is a function of pipe length ‘l’ & velocity ‘v’ and viscosity ‘μ’
using Rayleigh’s method, develop an expression for ΔP.
&#3627409125;&#3627408451;=&#3627408467;(&#3627408447;,&#3627408439;,&#3627408483;,??????)
&#3627409125;&#3627408451;=&#3627408446;⋅&#3627408447;
&#3627408462;
⋅&#3627408439;
&#3627408463;
⋅&#3627408483;
&#3627408464;
⋅??????
&#3627408465;

→&#3627408448;
1
&#3627408447;
−1
&#3627408455;
−2
=&#3627408448;
0
&#3627408447;
0
&#3627408455;
0
⋅&#3627408447;
&#3627408462;
⋅&#3627408447;
&#3627408463;
⋅(&#3627408447;&#3627408455;
−1
)
&#3627408464;
⋅(&#3627408448;&#3627408447;
−1
&#3627408455;
−1
)
&#3627408465;

→&#3627408448;
1
&#3627408447;
−1
&#3627408455;
−2
=&#3627408448;
0+&#3627408465;
⋅&#3627408447;
0+&#3627408462;+&#3627408463;+&#3627408464;−&#3627408465;
⋅&#3627408455;
0−&#3627408464;−&#3627408465;

&#3627408465;=1,&#3627408462;+&#3627408463;+&#3627408464;−&#3627408465;=−1, −&#3627408464;−&#3627408465;=−2
&#3627408464;=1 &#3627408462;+&#3627408463;=−1 &#3627408463;=−&#3627408462;−1
Substituting,
&#3627409125;&#3627408451;=&#3627408446;⋅&#3627408447;
&#3627408462;
⋅&#3627408439;
−1−&#3627408462;
⋅&#3627408483;
1
⋅??????
1
=&#3627408446;⋅??????⋅&#3627408483;⋅
&#3627408447;
&#3627408462;
&#3627408439;
1+&#3627408462;

&#3627409125;&#3627408451;=
&#3627408446;⋅??????⋅&#3627408483;
&#3627408439;
⋅(
&#3627408447;
&#3627408439;
)
&#3627408462;

Buckingham’s pi theorem
If there are n no. of total variables, and m no. of fundamental quantities, then given systems can be grouped into
n-m pi terms.
The resistance force F of a ship is a function of length ‘l’, velocity ‘v’, acceleration due to gravity ‘g’ and fluid
properties like density ‘ρ’, viscosity ‘μ’, and write the relationship in dimensionless form using buckingham’s pi
theorem.
&#3627408441;=??????(&#3627408447;,&#3627408483;,&#3627408468;,&#3627409164;,??????)
&#3627408475;=6,&#3627408474;=3
[&#3627408441;→&#3627408448;&#3627408447;&#3627408455;
−2
,&#3627408468;→&#3627408447;&#3627408455;
−2
,&#3627409164;→&#3627408447;
−3
,??????→&#3627408448;&#3627408447;
−1
&#3627408455;
−1
,&#3627408483;→&#3627408447;&#3627408455;
−1
]
&#3627408455;ℎ&#3627408466; &#3627408468;&#3627408470;&#3627408483;&#3627408466;&#3627408475; &#3627408480;&#3627408486;&#3627408480;&#3627408481;&#3627408466;&#3627408474; &#3627408483;&#3627408462;&#3627408475; &#3627408463;&#3627408466; &#3627408468;&#3627408479;&#3627408476;&#3627408482;&#3627408477;&#3627408466;&#3627408465; &#3627408470;&#3627408475;&#3627408481;&#3627408476; 6−3 =3,3 &#3627409163; &#3627408481;&#3627408466;&#3627408479;&#3627408474;&#3627408480;
Selection of repeated variables
1. Repeated variables must be selected from independent variables.
2. Number of repeated variables is equal to number of fundamental quantities.
3. Each repeated variable must have its own dimension.
4. Repeated variable group must contain all fundamental quantities.
5. Most fundamental quantity must be selected as repeated variable.
→&#3627408441;=??????(&#3627408447;,&#3627408483;,&#3627408468;,&#3627409164;,??????)
→&#3627409163;
1=&#3627408441;⋅&#3627408447;
&#3627408462;1
⋅&#3627408483;
&#3627408463;1
⋅&#3627409164;
&#3627408464;1

→&#3627409163;
2=&#3627408468;⋅&#3627408447;
&#3627408462;2
⋅&#3627408483;
&#3627408463;2
⋅&#3627409164;
&#3627408464;2

→&#3627409163;
3=??????⋅&#3627408447;
&#3627408462;3
⋅&#3627408483;
&#3627408463;3
⋅&#3627409164;
&#3627408464;3

&#3627409221;
&#3627409359;→
&#3627408448;
0
&#3627408447;
0
&#3627408455;
0
=&#3627408448;&#3627408447;&#3627408455;
−2
⋅&#3627408447;
&#3627408462;1
⋅(&#3627408447;&#3627408455;
−1
)
&#3627408463;1
⋅(&#3627408448;&#3627408447;
−3
)
&#3627408464;1

&#3627408448;
0
&#3627408447;
0
&#3627408455;
0
=&#3627408448;
1+&#3627408464;1⋅&#3627408447;
1+&#3627408462;1+&#3627408463;1−3&#3627408464;1⋅&#3627408455;
−2−&#3627408463;1
&#3627408464;
1=−1 &#3627408463;
1=−2 &#3627408462;
1=−2
&#3627409163;
1=
&#3627408441;
&#3627408447;
2
&#3627408483;
2
&#3627409164;

&#3627408454;&#3627408470;&#3627408474;&#3627408470;&#3627408473;&#3627408462;&#3627408479;&#3627408473;&#3627408486;,&#3627409163;
2=
&#3627408468;&#3627408447;
&#3627408483;
2
&#3627409163;
3=
??????
&#3627409164;&#3627408483;&#3627408447;

→&#3627408441;=??????(&#3627408447;,&#3627408483;,&#3627408468;,&#3627409164;,??????)
→&#3627409163;
1=??????(&#3627409163;
2,&#3627409163;
3)→
&#3627408441;
&#3627408447;
2
&#3627408483;
2
&#3627409164;
=??????(
&#3627408468;&#3627408447;
&#3627408483;
2
,
??????
&#3627409164;&#3627408483;&#3627408447;
)→&#3627408441;=&#3627409164;&#3627408447;
2
&#3627408483;
2
⋅??????(
&#3627408468;&#3627408447;
&#3627408483;
2
,
??????
&#3627409164;&#3627408483;&#3627408447;
)
Various forces in fluid mechanics
Inertia force
&#3627408441;
??????=&#3627408474;⋅&#3627408462;
[&#3627409164;=
&#3627408474;
&#3627408457;
3
=
&#3627408474;
&#3627408447;
3
→&#3627408474;=&#3627409164;⋅&#3627408447;
3
,&#3627408462;=
&#3627408483;
&#3627408455;
]
&#3627408441;
??????=&#3627409164;⋅&#3627408447;
3

&#3627408483;
&#3627408455;
=&#3627409164;⋅&#3627408447;
2

&#3627408447;
&#3627408455;
⋅&#3627408483; →&#3627408441;
??????=&#3627409164;⋅&#3627408447;
2
⋅&#3627408483;
2

Pressure Force
&#3627408451;=
&#3627408441;
&#3627408451;
&#3627408436;
→&#3627408441;
&#3627408451;=&#3627408451;⋅&#3627408436;
&#3627408441;
&#3627408451;=&#3627408451;⋅&#3627408447;
2

Gravity force
&#3627408441;
&#3627408468;=&#3627408474;&#3627408468;
&#3627408441;
&#3627408468;=&#3627409164;⋅&#3627408447;
3
⋅&#3627408468; [&#3627408474;=&#3627409164;⋅&#3627408447;
3
]
Surface tension force
??????=
&#3627408441;
&#3627408480;
&#3627408447;

&#3627408441;
&#3627408480;=??????⋅&#3627408447;
Viscous force
&#3627408441;
&#3627408483;=
??????⋅&#3627408436;⋅&#3627408483;
&#3627408486;

&#3627408441;
&#3627408483;=
??????⋅&#3627408447;
2
⋅&#3627408483;
&#3627408447;

&#3627408441;
&#3627408483;=??????⋅&#3627408447;⋅&#3627408483;
Elastic force
When a fluid is compresses, there is a rise in pressure, this rise in pressure is proportional to bulk modulus and this
rise in pressure gives rise to a force known as elastic force.
&#3627408441;
&#3627408466;=&#3627408446;⋅&#3627408447;
2

Various dimensionless numbers in fluid mechanics
Reynold’s number
It’s defined as the ratio of inertia force to viscous force.
→&#3627408453;&#3627408466;=
&#3627408441;
??????
&#3627408441;
&#3627408483;
=
&#3627409164;⋅&#3627408447;
2
⋅&#3627408483;
2
??????⋅&#3627408447;⋅&#3627408483;
=
&#3627409164;⋅&#3627408447;⋅&#3627408483;
??????

→&#3627408453;&#3627408466;=
&#3627409164;⋅&#3627408447;⋅&#3627408483;
??????

Euler number
&#3627408440;&#3627408482;=
&#3627408441;
??????
&#3627408441;
&#3627408451;
=
&#3627409164;⋅&#3627408447;
2
⋅&#3627408483;
2
&#3627408451;⋅&#3627408447;
2

&#3627408440;&#3627408482;=
&#3627409164;⋅&#3627408483;
2
&#3627408451;

Froude number
&#3627408441;
&#3627408479;=
&#3627408441;
??????
&#3627408441;
&#3627408468;
=
&#3627409164;⋅&#3627408447;
2
⋅&#3627408483;
2
&#3627409164;⋅&#3627408447;
3
⋅&#3627408468;

&#3627408441;
&#3627408479;=
&#3627408483;
2
&#3627408468;⋅&#3627408447;

Weber number
It’s the ratio of inertia force to surface tension force.
&#3627408458;&#3627408466;=
&#3627408441;
??????
&#3627408441;
&#3627408480;
=
&#3627409164;⋅&#3627408447;⋅&#3627408483;
2
??????⋅&#3627408447;

&#3627408458;&#3627408466;=
&#3627409164;⋅&#3627408483;
2

??????

Mach number
&#3627408448;=√
&#3627408441;
??????
&#3627408441;
&#3627408466;
=√
&#3627409164;⋅&#3627408483;
2
⋅&#3627408447;
2
&#3627408446;⋅&#3627408447;
2
= √
&#3627409164;⋅&#3627408483;
2
&#3627408446;
=
&#3627408483;

&#3627408446;
&#3627409164;
=
&#3627408483;
&#3627408438;

&#3627408448;=
&#3627408483;
&#3627408438;

&#3627408453;&#3627408466;→&#3627408457;&#3627408470;&#3627408480;&#3627408464;&#3627408476;&#3627408482;&#3627408480; &#3627408440;&#3627408482;→&#3627408451;&#3627408479;&#3627408466;&#3627408480;&#3627408480;&#3627408482;&#3627408479;&#3627408466; &#3627408441;&#3627408479;→&#3627408442;&#3627408479;&#3627408462;&#3627408483;&#3627408470;&#3627408481;&#3627408486; &#3627408458;&#3627408466;→&#3627408454;&#3627408482;&#3627408479;&#3627408467;&#3627408462;&#3627408464;&#3627408466; &#3627408481;&#3627408466;&#3627408475;&#3627408480;&#3627408470;&#3627408476;&#3627408475; &#3627408448;→&#3627408466;&#3627408473;&#3627408462;&#3627408480;&#3627408481;&#3627408470;&#3627408464; &#3627408467;&#3627408476;&#3627408479;&#3627408464;&#3627408466;
Similitude and Modelling
Geometric similarity
Model and prototype are said to be in geometric similarity, if the ratio if corresponding dimensions of model and
prototype are same.

&#3627408473;
&#3627408474;
&#3627408473;
&#3627408477;
=
&#3627408463;
&#3627408474;
&#3627408463;
&#3627408477;
=
&#3627408481;
&#3627408474;
&#3627408481;
&#3627408477;
=&#3627408447;
&#3627408479; (&#3627408454;&#3627408464;&#3627408462;&#3627408473;&#3627408466; &#3627408479;&#3627408462;&#3627408481;&#3627408470;&#3627408476;)
&#3627408436;
&#3627408474;
&#3627408436;
&#3627408477;
=
&#3627408473;
&#3627408474;⋅&#3627408463;
&#3627408474;
&#3627408473;
&#3627408477;⋅&#3627408463;
&#3627408477;
=&#3627408447;
&#3627408479;
2

&#3627408457;&#3627408476;&#3627408473;
&#3627408474;
&#3627408457;&#3627408476;&#3627408473;
&#3627408477;
=
&#3627408473;
&#3627408474;⋅&#3627408463;
&#3627408474;⋅&#3627408481;
&#3627408474;
&#3627408473;
&#3627408477;⋅&#3627408463;
&#3627408477;⋅&#3627408481;
&#3627408477;
=&#3627408447;
&#3627408479;
3

Kinematic Similarity
Model and prototype are said to be in kinematic similarity, if the ratio of velocity & acceleration at corresponding
points in model and prototype are same.
Note
For kinematic similarity, geometric similarity I must.
Dynamic Similarity
Model and prototype are said to be in dynamic similarity, if the ratio of forces at corresponding points in model
and prototype are same.

Note
For achieving dynamic similarity, various dimensionless numbers are equated in model and prototype.
&#3627408441;
?????? 1&#3627408474;
&#3627408441;
?????? 1&#3627408477;
=
&#3627408441;
&#3627408483; 1&#3627408474;
&#3627408441;
&#3627408483; 1&#3627408477;

&#3627408441;
?????? 1&#3627408474;
&#3627408441;
&#3627408483; 1&#3627408474;
=
&#3627408441;
?????? 1&#3627408477;
&#3627408441;
&#3627408483; 1&#3627408477;

&#3627408453;&#3627408466;
&#3627408474;=&#3627408453;&#3627408466;
&#3627408477;