ImageAnalysisandProcessing Image Enhancements
in the Frequency Domain
LaurentNajman [email protected]
ESIEEParis
Universit´eParis-Est,Laboratoired’InformatiqueGaspard-Monge,´Equipe
A3SI
imageprocessing,transforms–p.1/46
Book
Chapter4(pages147–219)
DigitalImageProcessing,SecondEdition
authors:RafaelC.GonzalezandRichardE.Woods editor:PrenticeHall
–p.3/44
Padding(3)
Let
P
anidenticalperiodfor
f
and
g
:
f
e
(x)=
(
f(x)0xA1
0AxP
g
e
(x)=
(
g(x)0xB1
0BxP If
P<A+B1
,thetwosignalwilloverlap:
wraparounderror.
If
P>A+B1
,theperiodswillbeseparated.
If
P=A+B1
,theperiodswillbeadjacent.
Wecanavoidwraparounderrorusing
PA+B1
.
Ingeneral,weuse
P=A+B1
.
–p.10/44
CutoffFrequency
Computecirclesthatenclosespecicamountoftotal
imagepower
P
T P
T
=
M1X u=0
N1
X v=0
P(u;v)
P(u;v)=jF(u;v)j
2
=R
2
(u;v)+I
2
(u;v)
=
100
P
T
X
u
X
v
P(u;v)
Source:http://www.imageprocessingbook.com–p.22/44
ButterworthLowpassFilters
BLPFoforder
n
,withacutofffrequencydistance
D
0
is
denedas
H(u;v)=
1
1+[
D(u;v)
D
0
]
2n
D(u;v)=
r
(u
M
2
)
2
+(v
N
2
)
2
noclearcutoffbetweenpassedandltered
frequencies
–p.24/44
GaussianLowpassFilters(1)
TheformofagaussianlowpasslterGLPFin2Dis:
H(u;v)=e
D
2
(u;v)
2
2
D(u;v)=
r
(u
M
2
)
2
+(v
N
2
)
2
TheinverseFouriertransformofaGLPFisalsoa
Gaussian
AspatialGaussianlterwillhavenoringing
–p.28/44
GaussianLowpassFilters(2)
:mesureofthespreadoftheGaussiancurve
Let
=D
0
,then:
H(u;v)=e
D
2
(u;v)
2D
2
0
Source:http://www.imageprocessingbook.com–p.29/44
HighpassFilters(1)
Highpasslter:imagesharpening(low-frequency
attenuation)
Inourcase:
zero-phase-shiftlter radiallysymmetric
H
hp
(u;v)=1H
lp
(u;v)
with:
H
lp
(u;v)
:transferfunctionofthecorresponding
lowpasslter
H
hp
(u;v)
:transferfunctionofthecorresponding
highpasslter
–p.32/44
ButterworthHighpassFilters
BLPFoforder
n
,withacutofffrequencydistance
D
0
is
denedas
H(u;v)=
1
1+[
D
0
D(u;v)
]
2n
D(u;v)=
r
(u
M
2
)
2
+(v
N
2
)
2
noclearcutoffbetweenpassedandltered
frequencies
–p.36/44
GaussianHighpassFilters
TheformofagaussianlowpasslterGLPFin2Dis:
H(u;v)=1e
D
2
(u;v)
2D
2
0
D(u;v)=
r
(u
M
2
)
2
+(v
N
2
)
2
TheinverseFouriertransformofaGLPFisalsoa
Gaussian
AspatialGaussianlterwillhavenoringing
–p.38/44