From Lab to Plate: Harnessing Plant Genetic Engineering for Resilient and Sustainable Agriculture.pptx

AchyutaBasak 31 views 19 slides Apr 27, 2024
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

With the ongoing expansion of the global population, the issues around food security, environmental sustainability, and resource scarcity are becoming progressively more urgent, and genetic engineering emerges as a powerful tool for sustainable agriculture. Breeders have been able to produce improve...


Slide Content

From Lab to Plate: Harnessing Plant Genetic Engineering for Resilient and Sustainable Agriculture

As the global population continues to grow and the challenges of food security, environmental sustainability, and resource scarcity become increasingly pressing, genetic engineering emerges as a powerful tool for sustainable agriculture. Introduction:

Different Genome editing tools: Source: Akram et al ., 2023

The CRISPR-Cas9 Technique:

ZFN ( Zinc finger Nuclease ) & TALEN ( Transcription Activator-Like Effector Nucleases ).

Agrobacterium-Mediated Transformation:

The implementation of genome editing methodologies to augment the tolerance of different plant species towards abiotic stresses.

Sl No. Host Plant Sp. Target Traits Targeted Gene/ Sequence (s) Result Method References 1. Solanum lycopersicum Tolerance to severe chilling injury SlCBF1 Transcription factor for chilling injury responses CRISPR/Cas9 [Li R,et al., 2018, Charve et al., 2018 ] 2. Oryza sativa Cadmium toxicity tolerance OsNRAMP5 The role of the Natural Resistance associated Macrophage protein 5 (NRAMP5) in conferring tolerance to Cadmium toxicity. CRISPR/Cas9 [Chang et al., 2020, Chu et al., 2022] 3. Oryza sativa, Brassica Sp. Salt tolerance PcINO1 Myo-inositol 1-phosphate synthase (responsible for salt tolerance) CRISPR/Cas9 [ Das-Chatterjee et al., 2006 ] 4. Zea mays Drought tolerance ARGOS8 Increased Crop Productivity in Response to Drought Stress in Field Environment CRISPR/Cas9 [ Tripathi et al., 2014]

The genetic enhancement of various crops to enhance their resistance against insects.

Sl No. Crop Gene used Target Insect Reference 1. Pigeon pea cry2Aa Pod borer [ Baburao et al., 2018] 2. Maize cry1Ab/cry2Aj Harmonia axyridis [Chang et al., 2017] 3. Cotton Vip3AcAa+ Cry1Ac Helicoverpa armigera [Chen et al., 2018] 4. Cotton Vip3A and VipCot proteins Helicoverpa zea , Heliothis virescens [ Bommireddy et al., 2011] 5. Rice cry1Aa or cry1Ab Stripe stem borer Insect [ Breitler et al., 2004]

Utilizing genome editing for enhancing disease resistance in different plant species

Sl No. Host Plant Sp. Pathogen Targeted Gene/ Sequence (s) Result Method Reference 1. Oryza sativa Magnaporthe oryzae OsERF922/exon Rice blast resistance CRISPR/Cas9 [Wang et al., 2016] 2. Arabidopsis thaliana Potyvirus eIF (iso)4E Potyvirus resistance CRISPR/Cas9 [ Pyott et al., 2016] 3. Triticum aestivum Blumeria graminis f. sp. Tritici TaMLO-A1 Powdery mildew resistance CRISPR/Cas9 [Wang et al., 2014] 4. Solanum lycopersicum Phytophthora capsici , Xanthomonas spp. SlDMR6-1/exon phytophthora blight, bacterial spot resistance CRISPR/Cas9 [ Thomazella et al., 2021] 5. Malus domestica Erwinia amylovora DIPM 1, 2, 4 Fire blight resistance CRISPR/Cas9 [ Malnoy et al., 2016]

Utilizing genome editing for enhancing herbicide resistance in different plant species

Sl No. Host Plant Sp. Targeted Gene/ Sequence (s) Result Method Reference 1. Linum usitatissimum EPSPS Tolerance to Glyphosate CRISPR/Cas9 [Saurer et al., 2016] 2. Nicotiana tabacum MEL1 Tolerance to herbicides ZFN [Cai et al., 2009] 3. Arabidopsis ALS ( Mutation at Trp574/Ser653) Herbicide tolerance via non-homologous end joining (NHEJ) CRISPR/Cas9 [Li et al., 2016] 4. Oryza sativa EPSPS Glyphosate tolerance CRISPR/Cas9 [Li et al., 2016] 5. Oryza sativa TubA2 ( Mutation at Met268) Adenine base editor for Herbicide tolerance CRISPR/Cas9 [Zhang et al., 2021]

Utilizing genome editing to enhance quality in different plant species

Sl No.   Improved Crop Target Traits Targeted Gene/ Sequence (s) Result Method Reference 1. Oryza sativa Nutritional Quality OsBADH2 2 Increased fragrance content TALEN [Shan et al., 2015] 2. Triticum aestivum Grain size TaGS5‐3A Larger kernel size and yield CRISPR-Cas9 [Ma et al., 2016] 3. Zea mays Nutritional improvement ZmIPK Phytic acid content has decreased CRISPR-Cas9, TALEN [Liang et al., 2014] 4. Hordeum vulgare Development and yield HvCKX1 Increase grain yield CRISPR-Cas9 [ Holubo vá et al., 2018 ] 5. Solanum lycopersicum Nutritional improvement SlAN2 Biosynthesis of anthocyanins in the 'Indigo Rose' purple tomato cultivar CRISPR-Cas9 [Zhi et al., 2020]

Conclusion: Revolutionizing Genetics. Precision and Efficiency. Precision Crop Improvement. Accelerated Breeding Programs . Preservation of Biodiversity.

Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genomics 2014;41(2):63–68. http://doi.org/10.1016/j.jgg.2013.12.001 Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L. Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 2018;66(34):9042–51. https://doi. org/10.1021/acs.jafc.8b02177. Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L. Transgenic expression of the rice Xa21 pattern‐recognition receptor in banana (Musa sp.) confers resistance to X anthomonas campestris pv . musacearum . Plant Biotechnol J 2014;12(6):663–73. https://doi.org/10.1111/pbi.12170 Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata ( Roxb .) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 2006;580(16):3980–88. https://doi.org/10.1016/j.febslet.2006.06.033 . Charve J, Manganiello S, Glabasnia A. Analysis of umami taste compounds in a fermented corn sauce by means of sensory-guided fractionation. J Agric Food Chem 2018;66(8):1863–71. https://doi. org/10.1021/acs.jafc.7b05633 Chang JD, Huang S, Yamaji N, Zhang W, Ma JF, Zhao FJ. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ 2020;43(10):2476–91. https://doi.org/10. 1111/pce.13843 Chu C, Huang R, Liu L, Tang G, Xiao J, Yoo H, Yuan M. The rice heavy‐metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. Plant Cell Environ 2022;45(4):1109– 26. https://doi.org/10.1111/pce.14263 . Baburao TM, Sumangala B. Development and molecular characterization of transgenic Pigeon pea carrying cry2Aa for pod borer resistance. J Pharmacogn Phytochem 2018;7(3):1581–85. Chang X, Lu Z, Shen Z, Peng Y, Ye G. Bitrophic and tritrophic effects of transgenic cry1Ab/cry2Aj maize on the beneficial, nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 2017;46(5):1171–76. https://doi.org/10.1093/ee/nvx113 . Chen W, Liu C, Lu G, Cheng H, Shen Z, Wu K. Effects of Vip3AcAa+Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae ). J Insect Sci 2018;18(4):13. https://doi.org/10.1093/ji sesa /iey075. Bommireddy PL, Leonard BR, Temple J, Price P, Emfinger K, Cook D, Hardke JT. Field performance and seasonal efficacy profiles of transgenic cotton lines expressing Vip3A and VipCot against Helicoverpa zea ( Boddie ) and Heliothis virescens (F.). J Cotton Sci 2011;15(3):251–59. Breitler JC, Vassal JM, Catala M, Meynard D, Marfà V, Melé E, et al. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: Protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2004;2(5):417–30. https://doi.org/10.1111/j. 1467-7652.2004.00086.x Thomazella DPT, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qi T, Pham J, Giuseppe P, Lee CY, Ortega A, Cho MJ, Hutton SF, Staskawicz B. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 2021;118(27):e2026152118. https://doi.org/10.1073/pnas.2026152118 . Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One 2016;11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027 . Pyott DE, Emma S, Attila M. Engineering of CRISPR/Cas9 mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 2016;17:1276–88. https://doi.org/10.1111/mpp. 12417. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 2014;32:947–51. https://doi.org/10.1038/nbt.2969 . Malnoy M, Viola R, Jung MH. DNA free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 2016;7:1904. https://doi.org/10.3389/fpls.2016. 01904 Cai CQ, Doyon Y, Ainley WM, Miller JC, DeKelver RC, Moehle EA, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 2009;69:699–709. https://doi.org/10.1007/s11103-008-9449-7 Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2016;2:16139. https://doi.org/10.1038/nplants. 2016.139 . Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 2016;170:1917–28. https://doi.org/10.1104/pp.15.01696 Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci 2021;64:1624–33. https://doi.org/ 10.1007/s11427-020-1800-5. Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OSBADH2 gene using TALEN technology. Plant Biotechnol J 2015;13(6):791–800. https://doi.org/10. 1111/pbi.12312. 302 Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. Ta GS 5‐3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 2016;14(5):1269–80. https://doi.org/10. 1111/pbi.12492 . Holubová K, Hensel G, Vojta P, Tarkowski P, Bergougnoux V, Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse genetics approaches. Front Plant Sci 2018;9:1676. https://doi.org/10.3389/fpls.2018.01676. Zhi J, Liu X, Li D, Huang Y, Yan S, Cao B, Qiu Z. CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. Plant Cell Rep 2020;39(6):799–809. https://doi.org/10.1007/s00299-020-02531-1 . Akram, F., Sahreen , S., Aamir, F. et al. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Mol Biotechnol 65, 227–242 (2023). https://doi.org/10.1007/s12033-022-00501-4 References:

Thank you