Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genomics 2014;41(2):63–68. http://doi.org/10.1016/j.jgg.2013.12.001 Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L. Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 2018;66(34):9042–51. https://doi. org/10.1021/acs.jafc.8b02177. Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L. Transgenic expression of the rice Xa21 pattern‐recognition receptor in banana (Musa sp.) confers resistance to X anthomonas campestris pv . musacearum . Plant Biotechnol J 2014;12(6):663–73. https://doi.org/10.1111/pbi.12170 Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata ( Roxb .) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 2006;580(16):3980–88. https://doi.org/10.1016/j.febslet.2006.06.033 . Charve J, Manganiello S, Glabasnia A. Analysis of umami taste compounds in a fermented corn sauce by means of sensory-guided fractionation. J Agric Food Chem 2018;66(8):1863–71. https://doi. org/10.1021/acs.jafc.7b05633 Chang JD, Huang S, Yamaji N, Zhang W, Ma JF, Zhao FJ. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ 2020;43(10):2476–91. https://doi.org/10. 1111/pce.13843 Chu C, Huang R, Liu L, Tang G, Xiao J, Yoo H, Yuan M. The rice heavy‐metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. Plant Cell Environ 2022;45(4):1109– 26. https://doi.org/10.1111/pce.14263 . Baburao TM, Sumangala B. Development and molecular characterization of transgenic Pigeon pea carrying cry2Aa for pod borer resistance. J Pharmacogn Phytochem 2018;7(3):1581–85. Chang X, Lu Z, Shen Z, Peng Y, Ye G. Bitrophic and tritrophic effects of transgenic cry1Ab/cry2Aj maize on the beneficial, nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 2017;46(5):1171–76. https://doi.org/10.1093/ee/nvx113 . Chen W, Liu C, Lu G, Cheng H, Shen Z, Wu K. Effects of Vip3AcAa+Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae ). J Insect Sci 2018;18(4):13. https://doi.org/10.1093/ji sesa /iey075. Bommireddy PL, Leonard BR, Temple J, Price P, Emfinger K, Cook D, Hardke JT. Field performance and seasonal efficacy profiles of transgenic cotton lines expressing Vip3A and VipCot against Helicoverpa zea ( Boddie ) and Heliothis virescens (F.). J Cotton Sci 2011;15(3):251–59. Breitler JC, Vassal JM, Catala M, Meynard D, Marfà V, Melé E, et al. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: Protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2004;2(5):417–30. https://doi.org/10.1111/j. 1467-7652.2004.00086.x Thomazella DPT, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qi T, Pham J, Giuseppe P, Lee CY, Ortega A, Cho MJ, Hutton SF, Staskawicz B. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc Natl Acad Sci USA 2021;118(27):e2026152118. https://doi.org/10.1073/pnas.2026152118 . Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One 2016;11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027 . Pyott DE, Emma S, Attila M. Engineering of CRISPR/Cas9 mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 2016;17:1276–88. https://doi.org/10.1111/mpp. 12417. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 2014;32:947–51. https://doi.org/10.1038/nbt.2969 . Malnoy M, Viola R, Jung MH. DNA free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 2016;7:1904. https://doi.org/10.3389/fpls.2016. 01904 Cai CQ, Doyon Y, Ainley WM, Miller JC, DeKelver RC, Moehle EA, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 2009;69:699–709. https://doi.org/10.1007/s11103-008-9449-7 Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2016;2:16139. https://doi.org/10.1038/nplants. 2016.139 . Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 2016;170:1917–28. https://doi.org/10.1104/pp.15.01696 Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci 2021;64:1624–33. https://doi.org/ 10.1007/s11427-020-1800-5. Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OSBADH2 gene using TALEN technology. Plant Biotechnol J 2015;13(6):791–800. https://doi.org/10. 1111/pbi.12312. 302 Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. Ta GS 5‐3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 2016;14(5):1269–80. https://doi.org/10. 1111/pbi.12492 . Holubová K, Hensel G, Vojta P, Tarkowski P, Bergougnoux V, Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse genetics approaches. Front Plant Sci 2018;9:1676. https://doi.org/10.3389/fpls.2018.01676. Zhi J, Liu X, Li D, Huang Y, Yan S, Cao B, Qiu Z. CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. Plant Cell Rep 2020;39(6):799–809. https://doi.org/10.1007/s00299-020-02531-1 . Akram, F., Sahreen , S., Aamir, F. et al. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Mol Biotechnol 65, 227–242 (2023). https://doi.org/10.1007/s12033-022-00501-4 References: