SlidePub
Home
Categories
Login
Register
Home
Technology
Funcion beta
Funcion beta
18,653 views
9 slides
Dec 29, 2012
Slide
1
of 9
Previous
Next
1
2
3
4
5
6
7
8
9
About This Presentation
contiene ejercicios de la función beta para ingenieros y carreras a fines
Size:
425.33 KB
Language:
none
Added:
Dec 29, 2012
Slides:
9 pages
Slide Content
Slide 1
Función Beta
?????? �,� = �
�−1
1
0
(1−�)
�−1
�� ; �>0 �>0
Si hacemos �=���
2
?????? ��=2 ��� ??????cos?????? �??????
Si reemplazamos limites �=0 → ??????=0 �=1 → ??????=
??????
2
Reemplazamos
?????? �,� =2 (���
2
??????)
�−1
??????
2
0
1−���
2
�−1
��� ??????cos?????? �??????
?????? �,� =2 ���
2�−1
??????∗
??????
2
0
cos
2y−1
?????? �??????
1
2
?????? �,� = ���
2�−1
??????∗
??????
2
0
cos
2y−1
?????? �??????
Si hacemos
�=
1
1+�
��=
��
1+�
2
�?????? �=0→�=∞ � �?????? �=1→0=0
?????? �,� =−
1
1+�
�−1
0
∞
1−
1
1+�
�−1
��
1+�
2
?????? �,� =
1
1+�
�−1
∞
0
1+�−1
1+�
�−1
��
1+�
2
?????? �,� =
1
1+�
�−1
∗
∞
0
�
�−1
1+�
�−1
∗
��
1+�
2
?????? �,� =
�
�−1
��
1+�
�−1+�−1+2
?????? �,� =
�
�−1
��
1+�
�+�
Slide 2
Teorema
?????? �,� =
Γ x Γ y
Γ x+y
; �>0 �>0
Ejemplo
tan??????
??????
2
0
�??????
��� ??????
cos??????
1/2??????/2
0
�??????
���
1/2
?????? ���
−1/2
??????
??????/2
0
�??????
Comparando
1
2
?????? �,� = ���
2�−1
??????∗
??????
2
0
cos
2y−1
?????? �??????
2�−1=
1
2
→ 2�=
1
2
+1 → 2�=
3
2
→ �=
�
�
2�−1= −
1
2
→ 2�= −
1
2
+1 → 2�=
1
2
→ �=
�
�
Si aplicamos el teorema
=
1
2
∗
Γ
3
4
∗ Γ
1
4
Γ
3
4
+
1
4
=
1
2
∗
Γ
3
4
∗ Γ
1
4
Γ
4
4
;���� Γ
4
4
=Γ 1 =1
Slide 3
=
1
2
∗ Γ
3
4
∗ Γ
1
4
=
1
2
∗ Γ
1
4
∗ Γ 1−
1
4
Aplicamos teorema de gamma
=
1
2
∗
π
sen
π
4
=
1
2
??????
2
2
=
??????
2
Resolver
�
�−1
1+�
∞
0
��
Por definición
?????? �,� =
�
�−1
��
1+�
�+�
Comparando
y - 1 = p - 1
x + y = 1
y = p
x = 1 – p
Reemplazamos
�
�−1
1+�
∞
0
��= ?????? 1−�,�
= ?????? �,1−�
Slide 4
=
Γ p Γ 1−p
Γ p+1−p
=Γ p Γ 1−p
Aplicamos teorema de gamma
=
??????
��� �??????
Resolver
�
2�
�
3�
+1
2
��
∞
−∞
�=�
3�
→ln�=ln �
3�
→ ln� = 3�
�=
1
3
ln� → ��=
1
3
��
��
Evaluamos los límites
Cuando �=∞→ �=∞ � �=−∞ → �=0
�
2∗
1
3
ln�
�+1
2
∞
0
∗
1
3
��
�
=
1
3
�
2
3
ln�
� �+1
2
∞
0
��
Por propiedades de euler y logaritmos
=
1
3
�
2
3∗ �
−1
�+1
2
∞
0
��
=
1
3
�
−1
3
�+1
2
∞
0
��
Slide 5
Si comparamos con ?????? �,� =
�
�−1
��
1+�
�+�
�−1= −
1
3
→ �= −
1
3
+1→�=
�
�
�+�=2 → �=2−
2
3
→�=
�
�
Reemplazamos
1
3
??????
4
3
,
2
3
=
1
3
∗
Γ
4
3
Γ
2
3
Γ
4
3
+
2
3
=
1
3
∗
1
3
Γ
1
3
Γ
2
3
Γ
6
3
=
1
9
∗
Γ
1
3
Γ
2
3
Γ(2)
Γ 2 =1!
=
1
9
∗Γ
1
3
Γ
2
3
=
1
9
∗Γ
1
3
Γ 1−
1
3
Aplicamos teorema de gamma
=
1
9
∗
π
sen
π
3
=
1
9
∗
π
3
2
=
2
9
∗
π
3
Slide 6
Resolver
��
�−1 3−�
3
1
�−1
−
1
2 3−�
−
1
2
3
1
��
Sea x – 1 = 2y x = 2y+1 dx = 2dy
Cuando x = 1 y = 0 cuando x=3 y=1
= 2�
−
1
2 3− 2�+1
−
1
2
1
0
2��
=2 2
−
1
2 (�)
−
1
2 3− 2�+1
−
1
2
1
0
��
=
2
2
�
−
1
2 3−2�−1
−
1
2
1
0
��
=
2
2
�
−
1
2 2−2�
−
1
2
1
0
��
=
2
2
�
−
1
2 2 1−�
−
1
2
1
0
��
=
2
2
�
−
1
2 2
−
1
2 1−�
−
1
2
1
0
��
=
2
2 2
�
− 1/2
(1−�)
− 1/2
1
0
��
Sea x - 1 = - ½ x = ½ y – 1 = - ½ y= ½
Luego
??????
1
2
,
1
2
=
Γ
1
2
Γ
1
2
Γ
1
2
+
1
2
Γ
1
2
Γ
1
2
Γ(1)
Γ
1
2
Γ
1
2
= ??????∗ ??????
= ?????? Rta
Slide 7
Ejercicio especial
Resolver
�
�−1
1−�
�−1
�+�
�+�
1
0
��
Sugerencia �=
�+1 �
�+�
� �+� = �+1 �
��+��= �+1 �
��= �+1 �−��
��= �+1−� �
�=
��
�+1−�
��=
� �+1 ��
�+1−�
2
Reemplazamos
��
�+1−�
�−1
1−
��
�+1−�
�−1
��
�+1−�
+�
�+�
1
0
� �+1
�+1−�
2
��
��
�−1
�+1−�
�−1
�+1−�−��
�+1−�
�−1
��+� �+1−�
�+1−�
�+�
1
0
� �+1
�+1−�
2
��
��
�−1
�+1−�
�−1
�+1−�−��
�−1
�+1−�
�−1
��+�
2
+�−��
�+�
�+1−�
�+�
1
0
�(�+1)
(�+1−�)
2
��
��
�−1
�+1−�−��
�−1
�
2
+�
�+1−�
�−1+�−1+2
�
2
+�
�+�
�+1−�
�+�
1
0
��
�(�+1−�)−��(−1)
� �+1−� +��
�
2
+�−��+��
�
2
+�
�(�+1)
Derivada de un cociente
�?????? �=0 → �=0
�?????? �=1
1=
��
�+1−�
�+1−�=��
�+1=��+�
�+1=� �+1
�+1
�+1
=�
1=�
Slide 8
��
�−1
�+1−�−��
�−1
�
2
+�
�+1−�
�+�
�
2
+�
�+�
�+1−�
�+�
1
0
��
��
�−1
�+1−�−��
�−1
�
2
+� �+1−�
�+�
�+1−�
�+�
�
2
+�
�+�
1
0
��
��
�−1
�+1−�−��
�−1
�
2
+�
�
2
+�
�+�
1
0
��
��
�−1
�+1−�−��
�−1
�
2
+�
�+�−1
1
0
��
�
�−1
�
�−1
�+1−�−��
�−1
� �+1
�+�−1
1
0
��
�
�−1
�
�−1
�+1−�−��
�−1
�
�+�−1
�+1
�+�−1
1
0
��
�
�+�−1
∗ �
−�+1
= �
�+�−1−�+1
= �
�
�
�−1
�+1−�−��
�−1
�
�
�+1
�+�−1
1
0
��
Como m, n, r son constantes son sacadas de la integral
1
�
�
�+1
�+�−1
�
�−1
�+1−�−��
�−1
1
0
��
�+1−�−�� = �+1 −�(1+�)
= �+1 (1−�)
Nos queda entonces
1
�
�
�+1
�+�−1
�
�−1
�+1
�−1
(1−�)
�−1
1
0
��
�+1
�−1
�
�
�+1
�+�−1
�
�−1
1−�
�−1
1
0
��
1
�
�
�+1
�
�
�−1
(1−�)
�−1
1
0
��
Slide 9
Si comparamos con
?????? �,� = �
�−1
1
0
1−�
�−1
�� ; �>0 �>0
�−1=�−1 → �=�
�−1=�−1 → �=�
Reemplazamos los nuevos valores
=
1
�
�
�+1
�
??????(�,�) … Rta
Tags
funcion beta
calculo
funciones especiales
calculo superior
funciones
calculo para ingenieros
ejercicios resueltos
Categories
Technology
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
18,653
Slides
9
Favorites
6
Age
4738 days
Related Slideshows
11
8-top-ai-courses-for-customer-support-representatives-in-2025.pptx
JeroenErne2
84 views
10
7-essential-ai-courses-for-call-center-supervisors-in-2025.pptx
JeroenErne2
77 views
13
25-essential-ai-courses-for-user-support-specialists-in-2025.pptx
JeroenErne2
74 views
11
8-essential-ai-courses-for-insurance-customer-service-representatives-in-2025.pptx
JeroenErne2
61 views
21
Know for Certain
DaveSinNM
36 views
17
PPT OPD LES 3ertt4t4tqqqe23e3e3rq2qq232.pptx
novasedanayoga46
39 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-9)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better