Fundamentals_of_ ppt Spectroscopy (2).pptx

DrMohamedOmer 87 views 11 slides Aug 30, 2025
Slide 1
Slide 1 of 11
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11

About This Presentation

أصنع لك ملف PPTX جاهز للتحميل مباشرة مع كل الرسومات التوضيحية بحيث لا تحتاج أي تعديل، وتكون جاهزة للعرض.


Slide Content

Fundamentals of Spectroscopy Introduction to light–matter interactions Applications in chemistry, physics, and biology

Electromagnetic Radiation & Light-Matter Interaction EM radiation: wave–particle duality (photons) Interaction mechanisms: absorption, emission, scattering Excited states: transition from ground → excited level Regions of spectrum: Radio, Microwave, IR, Visible, UV, X-ray

Electronic Absorption & Emission Atoms: Sharp line spectra (quantized transitions) Molecules: Band spectra (vibrational + rotational fine structure) Absorption: promotion of electron → higher orbital Emission: relaxation → photon release

Basics of Atomic & Molecular Spectroscopy Atomic spectroscopy: electronic transitions only Molecular spectroscopy: electronic, vibrational, rotational Spectra provide fingerprints of elements/molecules

Electronic Spectroscopy (UV-Vis) UV-Vis range: 200–800 nm Electronic transitions: σ → σ*, n → π*, π → π* (conjugated systems) Applications: concentration determination (Beer–Lambert law), structure analysis

Vibrational Spectroscopy (IR & Raman) IR spectroscopy: absorption of IR → vibrational transitions (functional group ID) Raman spectroscopy: inelastic scattering of light (complementary to IR) Applications: molecular structure, chemical bonding

Basics of Mass Spectrometry Ionization of molecules → charged fragments Mass-to-charge ratio (m/z) detection Provides molecular weight & fragmentation pattern Coupled with chromatography (GC-MS, LC-MS)

Flame Atomic Emission Spectroscopy Excitation of atoms in a flame → emission of characteristic wavelengths Qualitative: element identification Quantitative: intensity proportional to concentration Common in metal analysis (Na, K, Ca)

Fluorescence Spectroscopy Absorption of light → excited state → re-emission at longer wavelength High sensitivity (trace detection) Applications: biomolecular probes, diagnostics, environmental monitoring

NMR Spectroscopy Nuclei with spin (¹H, ¹³C) in magnetic field absorb radiofrequency Provides chemical environment of nuclei Applications: structure determination, medical imaging (MRI)

Conclusion Spectroscopy: tool for studying atomic & molecular structure Different techniques probe different energy levels Electronic (UV-Vis, fluorescence, AES); Vibrational (IR, Raman); Mass spectrometry; NMR Applications across chemistry, biology, materials, medicine
Tags