Problem 5.2 [2]
Given: Velocity fields
Find: Which are 3D incompressible
Solution:
Basic equation:
x
u
∂
∂ y
v
∂
∂
+
z
w
∂
∂
+ 0=
Assumption: Incompressible flow
a) uxy, z, t, ()y
2
2x⋅z⋅+= vxy, z, t, ()2 −y⋅z⋅x
2
y⋅z⋅+=wxy, z, t, ()
1
2
x
2
⋅z
2
⋅x
3
y
4
⋅+=
x
uxy, z, t, ()
∂
∂
2z⋅→
y
vxy, z, t, ()
∂
∂
x 2
z⋅2z⋅−→
z
wxy, z, t, ()
∂
∂
x 2
z⋅→
Hence
x
u
∂
∂ y
v
∂
∂
+
z
w
∂
∂
+ 0= INCOMPRESSIBLE
b) uxy, z, t, ()xy ⋅z⋅t⋅= vxy, z, t, ()x −y⋅z⋅t
2
⋅=wxy, z, t, ()
z
2
2xt
2
⋅yt⋅−()⋅=
x
uxy, z, t, ()
∂
∂
ty⋅z⋅→
y
vxy, z, t, ()
∂
∂
t 2
x⋅z⋅−→
z
wxy, z, t, ()
∂
∂
zt 2
x⋅ty⋅−()⋅→
Hence
x
u
∂
∂ y
v
∂
∂
+
z
w
∂
∂
+ 0= INCOMPRESSIBLE
c) uxy, z, t, ()x
2
y+z
2
+=vxy, z, t, ()xy −z+= wxy, z, t, ()2 −x⋅z⋅y
2
+ z+=
x
uxy, z, t, ()
∂
∂
2x⋅→
y
vxy, z, t, ()
∂
∂
1−→
z
wxy, z, t, ()
∂
∂
12x⋅−→
Hence
x
u
∂
∂ y
v
∂
∂
+
z
w
∂
∂
+ 0= INCOMPRESSIBLE