GaN Blue Laser Diodes by kanyai tt .pptx

tapce1 7 views 16 slides Oct 23, 2025
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Gan blue laser presentation


Slide Content

GaN Blue Laser Diodes: Technology, Applications, and Future Trends Kanyai TT

Introduction GaN -based blue laser diodes (LDs) are pivotal in modern optoelectronics, enabling high-power, short-wavelength emission for diverse applications. Their development stems from breakthroughs in GaN material science and epitaxial growth. Wavelength Range: 405–450 nm (key for high-density optical storage). Power Efficiency:2–5x higher than traditional DPSS lasers. Thermal Stability: Operates up to 80Β°C+ due to wide bandgap (3.4 eV for GaN ). Compactness: Enables portable devices (e.g., handheld projectors).

Why GaN blue laser diodes are revolutionary

πŸ“œ Historical Development

πŸ“œ Historical Development continued… 1990:Nakamura ’ s team at Nichia achieved p-type GaN doping (Mg + thermal annealing). 1996: First commercial InGaN MQW LD (pulsed, then CW by 1999). 2010s:Emergence of GaN -on- GaN homoepitaxy (reducing dislocation density to <10 ⁢ cm ⁻² .

How GaN Blue Lasers Work Laser diodes operate via stimulated emission in a forward-biased p-n junction. Photons are amplified in an optical cavity formed by cleaved facets (mirrors). Stimulated emission in InGaN quantum wells creates coherent 450 nm light

Anatomy of a GaN Laser Diode Substrate: Sapphire/ SiC / GaN (lattice-matched GaN preferred). Buffer Layer: AlN / GaN to reduce threading dislocations. n- GaN Cladding: Si-doped for electron injection. Active Region: InGaN / GaN MQWs (3 – 5 wells, ~3 nm thick). p- GaN Cladding: Mg-doped + annealed.

Growing Perfect GaN Crystals 1. **Precursor Injection** ( TMGa + NH ₃ β†’ GaN + byproducts). 2. **Nucleation Layer** (Low-temp AlN / GaN buffers). 3. **High-Temp Growth** ( InGaN QWs at 800 – 1000 Β° C).

*Engineering Light with Quantum Wells* **Visual:** - **Animated Band Diagram:** - **Step 1:** Show flat bands (no bias). - **Step 2:** Add forward bias β†’ electrons/holes flood QWs. - **Step 3:** Photon emission (blue flash). **Critical Parameters:** - **Well Thickness:** 2 – 4 nm (optimal for 450 nm light). - **Barrier Material:** Al β‚€ . ₁ Ga β‚€ . ₉ N (prevents carrier leakage). **Callout:** *"Thinner wells = higher efficiency but harder to grow!"*

Engineering Light with Quantum Wells - **Step 1:** Show flat bands (no bias). - **Step 2:** Add forward bias β†’ electrons/holes flood QWs. - **Step 3:** Photon emission (blue flash). **Critical Parameters:** - **Well Thickness:** 2 – 4 nm (optimal for 450 nm light). - **Barrier Material:** Al β‚€ . ₁ Ga β‚€ . ₉ N (prevents carrier leakage). **Callout:** *"Thinner wells = higher efficiency but harder to grow!"*

Breakthroughs That Made GaN Lasers Possible 1. **Two-Flow MOCVD:** - *Image:* Nakamura ’ s reactor patent diagram. - *Impact:* Dropped defect density 1000x. 2. **p-Type Activation:** - *Graph:* Hole concentration vs. annealing temp (peak at 700 Β° C). 3. **ELOG Substrates:** - *SEM Image:* Dislocations "bending" away from active region. **Quote:** *"Without these innovations, GaN lasers would still be lab curiosities."*

GaN Lasers in Action 1. **Entertainment:** - *Sony ’ s 4K projectors* (laser phosphor tech). - Icon: Movie reel. 2. **Industry:** - *Precision welding of copper* (800W lasers). - Icon: Robot arm. 3. **Medicine:** - *Cancer detection* (405 nm fluorescence imaging). - Icon: DNA helix.

Overcoming the Roadblocks | **Challenge** | **Solution** | **Status** | |-------------------------|-----------------------------------|--------------------------| | Defects (10 ⁸ cm ⁻² ) | ELOG substrates (10 ⁢ cm ⁻² ) | βœ… Commercialized | | Green Gap (500 – 550 nm) | Semipolar GaN | πŸ§ͺ Lab-stage (2024) | | Cost ($50/diode) | 6-inch GaN -on-Si wafers | ⏳ Pilot production |

The Next Decade of GaN Lasers **2025:** 50W single emitters (LiDAR). - **2030:** $10/diode (consumer markets). - **2035:** Direct green lasers (displays). **Quote:** *" GaN could dominate the $10B laser market by 2030."*

Conclusion: The Blue Laser Revolution Has Just Begun 1. **Summary:** 3 key takeaways (efficiency, applications, future). 2. **Question:** *"Will GaN lasers make traditional LEDs obsolete?"* 3. **Contact:** Your email/QR code for further discussion.