Gauss Jordan Method

4,298 views 2 slides Sep 08, 2013
Slide 1
Slide 1 of 2
Slide 1
1
Slide 2
2

About This Presentation

No description available for this slideshow.


Slide Content

The Gauss-Jordan method
Algorithm
The Gauss-Jordan method transforms the initial expanded matrix into a identity
matrix and a right side equal to the solution that is sought:

nn
cx
.....
cx
cx
=
=
=
22
11
()














=
nnnnn
n
n
b
...
b
b
a...aa
.....
a...aa
a...aa
b|A
2
1
21
22221
11211















n
c
...
c
c
...
.....
...
...
2
1
100
010
001


Example 1. Solve the system using the Gauss-Jordan method with a chosen pivot
element from a row:

7
03253
10524
932
432
4321
321
421
−=−+−
=−++
−=+−
=+−
xxx
xxxx
xxx
xxx
.

Solution: We work the same way as with the Gauss method by choosing a pivot element
from a row but the unknowns are excluded under the main diagonal as well as above it.
The aim is to be left with non-zero elements only along the main diagonal.


)4(:




















−−



7
0
9
10
1110
3253
3012
052









4







0
3
−−



7
0
10
9
111
325
052
3012
4



. (-2) .(-3)


















−−
−−


7
14
1110
30
300
01
2
15
2
5
4
7
2
5
4
5
2
1






















− 7
0
9
11
32
30
0
2
5
4
51


−10
53
12
1
2




: )(
2
13


















−−
−−
−−

7
14
1110
300
10
01
13
15
2
5
2
5
13
6
26
7
4
5
2
1



.)( .(1)













−0
00





−−
−−

7
14
111
3
30
01
2
15
2
5
2
5
4
7
4
5
2
1
4
4
2
13
2
1



13/2



















−−

13
76
13
15
13
25
13
19
26
19
13
6
26
7
13
3
26
29
14
00
300
10
01




:)(
2
5




-5/2




















−−

13
76
5
28
13
15
13
25
13
19
26
19
5
6
13
6
26
7
13
3
26
29
00
100
10
01




.)(
26
7
.)(
26
29

.)(
26
19


























65
114
5
28
65
23
65
281
65
38
5
6
65
51
65
72
000
100
010
001






:)(
65
38























31000
100
010
001
5
28
65
23
65
281
5
6
65
51
65
72





.)(
5
6
.)(
65
51
.)(
65
72

















3
2
2
1
1000
0100
0010
0001

3
2
2
1
4
3
2
1=
−=
=
=x
x
x
x



By Iliya Makrelov, [email protected]
Tags