Gel electrophoresis

ShaikhSaniya2 522 views 29 slides Jun 10, 2019
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Useful for all science faculty


Slide Content

Gel Electrophoresis:
Introduction and Techniques

What does it do?
Separation of
◦Proteins
◦Western Blots
◦SDS-PAGE
◦Nucleic Acids
◦Northern Blots
◦Southern Blots
Based on
◦Charge and/or
◦Size
What else?
◦Torture Undergrads

1920’s
◦Erich Huckel and M. Smoluchowski are among the
pioneers of electrophoresis.
◦Huckel developed the Huckel equation
◦D. C Henry – provided a theory spherical polyions.
1930’s
◦A. Tiselius: Nobel Prize for Chemistry in 1948
◦Introduced idea of moving boundaries
1960’s
◦A. L. Shapiro, E. Vinuela and J. V. Maizel: developed
relationship between electrophoretic migration of
proteins and their molecular weight.
Arne Tiselius
Erich Huckel
History: Overview1

History: Overview
1975
◦Farrell and J. Klose: developed 2D electrophoresis
1981
◦J. W. Jorgensen and K. D. Lukas: performed electrophoretic amino acid separation at
high efficiency
1990
◦B. L. Karger’s group: discovered a matrix that could be used to separate DNA at high
resolution
All these improvements led to the use of electrophoresis in mapping the
human genome.
2000 to now
◦widely used high-resolution techniques for analytical and preparative separations

Parts of the System
Gel Support Medium
◦Agarose
◦Polyacrylamide (PA)
◦Native Gels
◦Use PA or Starch
◦No Denaturant
Buffer
DC Power Supply

Basics
www.davidson.edu/academic/biology/courses/molbio/sdspage/sdspage.html

Molecule in an Electric Field
http://web.ncf.ca/ch865/englishdescr/EFld2Plates.html
E
Q+ QE
f*u

Deriving u
a=0, then
 
INDEX
Q = charge
E = Electric field
m = mass
f = friction
coefficient
u = velocity

Electrophoretic Mobility,
μ
Defined as the ratio of the particles
velocity to the strength of the driving
field.
Therefore,
- Now the velocity depends on the particle
properties.
 

Units of
μ
 
So,
Therefore,
 
http://eculator.com/formula/calculator.do?equation=Capacitance-of-parallel-plate-capacitor&id=41

Does not correspond to Reality, Not
done!
1.Net charge – due to counterions. Net charge is
used instead.
2.Convection effects – corrected by using gels
 
https://www.mecheng.osu.edu/cmnf/what-micro-and-nano-fluidics

Huckel Equation
Used to model electrostatic mobility.
Assume that the particle is a sphere, then Stokes
equation applies.
 

Electrophoretic Experiments
Method Notes
Moving Boundary Electrophoresis
or
Free Electrophoresis
-Gives mobility
-Basis: particles transport properties
Thin layer Zone
or
Zonal gel Electrophoresis
-Uses a matrix as a sieve to separate
molecules
-Basis: size
-Gel: provides stability against
convection
Electric birefringence -Not in syllabus

Free Electrophoresis
Electrophoretic
separation without
gel support
◦Capillary
electrophoresis
◦Free Flow
Electrophoresis
http://www.youtube.com/watch?feature=player_detailpage&v=lnAcViYsz4g#t=161s
http://www.utwente.nl/ewi/bios/research/micronanofluidics/oldmicro-
nanofluidicsprojects/Microfluidic/

Forces on the Particle

Retardation Forces
FHD
◦Hydrodynamic Friction
FCF
◦Counter ion Flow
◦Particle Travels Upstream
FFA
◦Field Asymmetry Effect
http://www.websters-online-dictionary.org/definitions/Electrophoresis

Electrophoretic Mobility
Smoluchowski
◦Determined another
way to view
electrophoretic
mobility2
◦Only for Thin double
layer
http://en.wikipedia.org/wiki/Marian_Smoluchowski

ξ (Zeta Potential)
Electric potential in
the double layer
Potential difference
between dispersion
medium and cage
around particle
Important in stability
of particles http://en.wikipedia.org/wiki/Zeta_potential

Hückel Correction
Smoluchowski did
not correct for Debye
length
◦Length over which
charges are screened3
Denoted by
◦κ

http://www.silver-colloids.com/Tutorials/Intro/pcs21.html

Steady State Electrophoresis
Ions trapped and
sealed with semi-
permeable
membrane
Electric Field
◦Flux of ions
Steady State
◦Fluxes of ion and
electric field equal
http://www.spinanalytical.com/mce-products-theory.php

Steady State Electrophoresis

Support Medium Electrophoresis
Agarose
Starch
SDS-PAGE
Native Set up
http://www.aesociety.org/areas/preparative_gel.php

Agarose and Starch Gels
Agarose
◦Used in DNA separation
methods
◦Can be sued in Large
protein separations4
◦Can easily be stored for
tagging5
Starch
◦Also used to separate
non-denatured proteins
http://delliss.people.cofc.edu/virtuallabbook/LoadingGel/LoadingGel.html

SDS-PAGE6
SDS
◦Sodium Dodecyl Sulfate
◦Denaturant
◦Movement based only on
molecular mass
◦-mercaptoethanol
β
PAGE
◦Polyacrylamide Support
http://www.davidson.edu/academic/biology/courses/molbio/sdspage/sdspage.html

SDS-PAGE
http://www.youtube.com/watch?v=IWZN_G_pC8U

Native Gel Conditions
Use PA support
No Denaturant
◦Protein stays in original
conformation
◦Protect from Oxidation
Movement depends on:
◦Intrinsic Charge7
◦Hydrodynamic Size
http://ccnmtl.columbia.edu/projects/biology/lecture6/index.htm

Viewing Conditions
Staining depends on type
of molecule
View Under UV
DNA
◦Ethidium Bromide
◦GelRed
Protein
◦Coomassie Brilliant Blue
◦Horse Radish Peroxidase
http://www.biotium.com/product/product_types/search/price_and_info.asp?item=41003

References
1 Serdyuk, I., Zaccai, N., & Zaccai, J. (2007). Methods in Molecular Biophysics:
Structure, Dynamics, Function. Cambridge: Cambridge University Press.
2 von Smoluchowski, M. (1903). Bulletin International de l'Academi des Sciences de
Cracovie , 184.
3 Huckel, E. (1924). Physik. Z. (25), 204.
4 Smisek, D., & Hoagland, D. (1989). Agarose Gel Electrophoresis of high molecular
weight, synthetic polyelectrolytes. Macromolecules , 22 (5.), 2270-2277.
5 Massachusets Institute of Technology. (n.d.). Essential Techniques of Molecular
Genetics. Retrieved 2012, from MIT Biology Hypertextbook:
http://www.ucl.ac.uk/~ucbhjow/b241/techniques.html
6 Voet, D., Voet, J., & Pratt, C. (2008). Fundamentals of Biochemistry: Life at the
Molecular Level. Hoboken: Wiley.
7Arakawa, T., Philo, J., Ejima, D., Tsumoto, K., & Arisaka, F. (2006). Aggregation
analysis of therapeutic proteins, part 1: General aspects and techniques for assessment.
Bioprocess International , 4 (10), 42-49.