Geotechnical Engineering_Site Investigations

WantonoFrancis 7 views 107 slides Apr 15, 2025
Slide 1
Slide 1 of 107
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107

About This Presentation

Geotechnical investigation is a critical aspect of engineering geology that involves the study of the physical properties and behaviour of earth materials, such as soil and rock, at a specific site.
This investigation is essential in the planning, design, and construction of civil engineering projec...


Slide Content

SUBSURFACE
INVESTIGATIONS
Engineering Geology
Francis W.

Geotechnical site Investigations
▪Geotechnicalinvestigationisacriticalaspectofengineeringgeologythatinvolvesthestudy
ofthephysicalpropertiesandbehaviorofearthmaterials,suchassoilandrock,ataspecific
site.
▪Thisinvestigationisessentialintheplanning,design,andconstructionofcivilengineering
projects,includingbuildings,bridges,dams,highways,andtunnels.
▪Thisinvestigationhelpsengineersandgeologistsunderstandthesite'ssubsurfaceconditions
andassessitssuitabilityforvariousconstructionprojects.

SUBSOIL EXPLORATION
Theprocessofdeterminingthelayersofnaturalsoildepositsthatwillunderliea
proposedstructureandtheirphysicalproperties

Objectives of site investigation
Followingaretheobjectivesofsiteinvestigationorsubsurfaceexploration
1.Determinationofthenatureofthedepositsofsoil.
2.Determinationofthedepthandthicknessofvarioussoilstrataandtheirextentinhorizontal
direction.
3.Locationofgroundwaterandfluctuationsingroundwaterlevel.
4.Obtainingsoilandrocksamplesfromthevariousstrata.
5.Determinationofengineeringpropertiesofsoilandrockstratathataffectstheperformance
ofthestructure.
6.Determinationofin-situpropertiesbyperformingfieldtests.
7.Toknowabouttheorderofoccurrenceofsoilandrockstrata.

Objectives of site investigation
9.Toselectasuitabletypeoffoundation.
10.Toestimatetheprobableandmaximumdifferentialsettlements.
11.Tofindthebearingcapacityofthesoil.
12.Topredictthelateralearthpressureagainstretainingwallsandabutments.
13.Toselectsuitablesoilimprovementtechniques.
14.Toselectsuitableconstructionequipment.
15.Toforecastproblemsoccurringinfoundationsandtheirsolutions.

Planning of Subsurface investigation (SI)
Toobtainthemostusefulinformationatminimumcostandeffort,properplanningof
subsurfaceinvestigationprogramisessential.
Forplanningoftheprogram,thesoilengineer-in-chargeoftheprogramshouldincludethe
followingsteps:
○Completelyfamiliarwiththekindofinformationrequiredfromtheinvestigation.
○Knowledgeoftype,sizeandimportanceoftheproject.
○Preparationoflayoutplanoftheproject,
○Preparationofboreholelayoutplanwhichincludesthenumberandspacingof
boreholes,depthandfrequencyofsampling.
○Selectionofproperdrillingandsamplingequipment.
○Selectionofpersonneltosupervisethefieldinvestigation.
○Markingonthelayoutplananyadditionaltypesofsoilinvestigation.
○Preparationofguidelinesforlaboratorytestingofcollectedsamples.

The purpose of a soil investigation program
▪Selectionofthetypeandthedepthoffoundationsuitableforagivenstructure.
▪Evaluationoftheload-bearingcapacityofthefoundation.
▪Estimationoftheprobablesettlementofastructure.
▪Determinationofpotentialfoundationproblems(forexample,expansivesoil,collapsible
soil,sanitarylandfill,andsoon).
▪Establishmentofgroundwatertable.
▪Predictionoflateralearthpressureforstructureslikeretainingwalls,sheetpilebulkheads
andbracedcuts.
▪Identificationofconstructionproblemsandtheirsolution(sheeting,dewatering,rock
excavation,etc.)
▪Identificationofproblemsconcerningadjacentexistingbuildings(settlement,damages)
▪Conductingfieldteststomeasurerelevantengineeringpropertiesofsoils.

The purpose of a soil investigation program
Thenatureandextentofsoilexplorationdependsupontheultimateusetowhichtheresultsof
theinvestigationwillbeapplied.Forexample,forstructureswhichtransmitheavyloadonthe
soil,theaimofsoilexplorationistoprovidedatawhichwillhelpintheselectionofpropertypes
offoundation,itslocationanddesignoffoundations.

Factors affecting exploration program
Soilexplorationprogramareinfluencedbyanumberoffactorssomeoftheseare:
▪Sizeandtypeoftheproject;
▪Generalcharacteristicsofthesoilsintheworkarea;
▪Timeavailableforexploration;and
▪Degreeofriskorsafetyinvolved.

General considerations for SI
Mainlytworequirementsshouldalwaysbeobservedinplanning/conductingSI
▪Accuracy/reliabilityofworkperformed,carelessnessorlackofexperiencemay
produceinconclusiveresultsleadingtowronginterpretations
▪TimelinessofperformingSI

Exploration program
•Thepurposeoftheexplorationprogramistodetermine,withinpracticallimits,the
stratificationandengineeringpropertiesofthesoilsunderlyingthesite.
•Theprincipalpropertiesofinterestwillbethestrength,deformation,andhydraulic
characteristics.
•Theprogramshouldbeplannedsothatthemaximumamountofinformationcanbeobtained
atminimumcost.

Phases of SI
ProjectAssessment:
ForaffectiveplanningofSIprogram,theGeotechnicalengineermustassessthefollowing
aspectsoftheproposeddevelopment.
○Thetype,purpose,locationandappropriatedimensionoftheproposedfacility,number
ofstorey,typeoffoundation,provisionbasementetc.
○Thetypeofconstruction,structuralloads,allowablesettlementsetc.
○Theexistingtopographyandanyproposedgrading
○Thepresenceofvariousdevelopmentsinthesitearea.
AllthefactorshaveanimpactandthoroughnessonSIprogram,e.g.,aproposednuclearpower
planttobebuiltondifficultgroundwouldrequireanextensiveSIprogramandcharacterization,
whileaonestoreywoodframebuildingonagoodsitemayrequireonlyminimaleffort.

Phases of SI
Framework/StagesofSI
SIprogrammayconsistsofthefollowingstages
○DeskStudyorLiteratureSearch
○Reconnaissance
○PreliminaryInvestigation
○DetailedInvestigation

Phases of SI
1.DeskStudy:
Assemblyofallavailableinformationregardingthesite,itmayinclude
▪Theinformationabouttheproposeddevelopment:dimensions,columnspacing,type
anduseofthestructure,basementrequirements,andanyspecialarchitectural
considerationsoftheproposedbuilding.Foundationregulationsinthelocalbuilding
codeshouldbeconsultedforanyspecialrequirements.Forbridgesthesoilengineer
shouldhaveaccesstotypeandspanlengthsaswellaspierloadings.Thisinformation
willindicateanysettlementlimitations,andcanbeusedtoestimatefoundationloads.
▪Sitehistory---earliersiteuse—mining---industrialcomplexes—Ancientmonuments
▪Geologicalmaps
▪Soilsurveyreports
▪Geotechnicalinvestigationreportofnearbysites
▪Historicgroundwater
▪Remotesensingdata,aerialphotographs,nowdayssatelliteimagerymaps

Phases of SI
2.Reconnaissanceofthearea:
Thismaybeintheformofafieldtriptothesite
whichcanreveal
▪Informationonthetypeandbehaviorof
adjacentstructuressuchascracks,noticeable
sags.Thetypeoflocalexistingstructuremay
influence,toaconsiderableextent,the
explorationprogramandthebestfoundation
typefortheproposedadjacentstructure.
▪Includesmarkingthelocationofproposed
exploratoryborings/trenches/testpits
▪Theexposedrockandthesurfacesoilsare
mapped
▪Markingofdifficultareaslikecoveredwith
organicsoil,sanitaryfilletc.
▪Approximatemapofthesiteareashowingthe
relativepositionofvariousexistingfeaturesin
thesitearea
▪Furtherfocusonvariousaspectslike:
✓Anyevidenceofpreviousdevelopment
onthesite
✓Anyevidenceofpreviousgradingon
site
✓Anyevidenceoflandslidesorstability
problem
✓Performanceofnearbystructure
✓Accesstothesite
✓Effectsofanyoffsiteconditionse.g.
flooding,mudfloworrockfallsetc.

Phases of SI
3.Preliminarysiteinvestigation:
▪Inthisphaseafewboringsaremadeoratestpitisopenedtoestablishinageneralmanner
thestratification,typesofsoiltobeexpected,andpossiblythelocationofthegroundwater
table.
▪Oneormoreboringsshouldbetakentorock,orcompetentstrata,iftheinitialborings
indicatetheuppersoilislooseorhighlycompressible.
▪Geophysicalmethodsmaybeusedtoestablishthetentativeboundarybetweenthestrata,
especiallythelocationofbedrock.
▪Laboratorytestingonlimitedsoilsamplestoevaluatethesoilparameters.
Thisamountofexplorationisusuallytheextentofthesiteinvestigationforsmallstructuresand
helpformulatingthescopeofSIforlargeprojectatdetailedSIstage.

Phases of SI
3.Preliminarysiteinvestigation:
Followingaresomeofthegeneralinformationobtainedthroughprimarysiteexploration.
▪Approximatesvaluesofsoil'scompressivestrength.
▪Positionofthegroundwatertable.
▪Depthandextentofsoilstrata.
▪Soilcomposition.
▪Depthofhardstratumfromgroundlevel.
▪Engineeringpropertiesofsoil(disturbedsample)

Phases of SI
4.Detailedsiteinvestigation:
Indetailedsoilinvestigation,boring,samplingandtestingisdonetoobtaintheengineering
propertiesofsoil.
▪Detailedexplorationispreferredforcomplexprojects,majorengineeringworks,heavy
structureslikedams,bridges,highrisebuildings,etc.Ahugeamountofcapitalisrequired
foradetailedsiteexplorationhence,itisnotrecommendedforminorengineeringworks
wherethebudgetislimited.Forsuchtypeofworks,datacollectedthroughpreliminarysite
explorationisenough.
▪Inthisstage,numerousfieldtestssuchasin-situvanesheartest,plateloadtest,etc.and
laboratorytestssuchaspermeabilitytests,compressivestrengthtestonundistractedsoil
samplesareconductedtogetexactvaluesofsoilproperties.

Phases of SI
4.Detailedsiteinvestigation:
Wherethepreliminarysiteinvestigationhasestablishedthefeasibilityoftheproject,amore
detailedexplorationprogramisundertaken.Thepreliminaryboringsanddataareusedasabasis
forlocatingadditionalborings,whichshouldbeconfirmatoryinnature,anditmayalsoinclude:
▪In-situtesting
▪Procuringsoilsamplesandcomprehensivelabtesting
▪Comprehensiveanalysesandreporting.

Phases of SI
5. During Construction Soil Investigation
If during excavations, the geotechnical condition may change from the established condition,
more soil investigation may be required to explore the extent of the changed conditions.

Subsurface Exploration Program

Planning/Scope of SI
WhiledecidingfieldworkofSI,threeaspectsareimportant
1.Locations2.Spacing3.DepthOfInvestigation/Boring
Location:Theboringshouldbeplacedatpointsofstrategicimportance
▪Atpointswhereheavyloadsareanticipated
▪Atabutmentsandatpointswhereintermediatepierswillcomeincaseofbridges
▪Fordams,usuallyalongthecentrelinebutsomelateralboringshouldbeplacedon
bothsidesofC/L
▪Forbuildingunits,atcornersandatcentreoftheplan

Planning/Scope of SI
Spacing:
▪Nohardandfastrule
▪Forstructuresusually10-30m
▪Forsmallstructures,minof3borings
▪Structuresconsistingofseparateunits,oneboringforeachunit
▪ForDams,tunnelsandotherexcavationsmaybecloselyspacedtogetbettergeology.

Planning/Scope of SI
Determiningthenumberofboring:
oThereisnohard-and-fastruleexistsfordeterminingthenumberofboringsaretobe
advanced.
oFormostbuildings,atleastoneboringateachcornerandoneatthecentershouldprovidea
start.
oSpacingcanbeincreasedordecreased,dependingontheconditionofthesubsoil.
oIfvarioussoilstrataaremoreorlessuniformandpredictable,fewerboreholesareneeded
thaninnonhomogeneoussoilstrata.

Planning/Scope of SI
In practice:
onumber of boreholes and the depth of each borehole
will be identified according to the type of project
and the subsoil on site.
oExample for a 5-story residential building with
dimensions of (40 x 70) m:
oThe required number of boreholes = 5
oboreholes (one at each corner and one at the center)
as mentioned previously.
oThe figure shows the distribution of boreholes on
the land

Planning/Scope of SI
Depth:
▪Uptodepthswhichareaffectedbyloadings,uptoinfluencezone
▪Explorationshouldbeextendedbelowalldepositsunsuitableforfoundationpurposes,e.g.
madeground,compressiblesoilsetc.
▪Uptohardstratum,min3minrocks

Planning/Scope of SI
Morespecifically:AsperBS-5930-1981
ForShallowFoundations:
Toadepthatleast1.5timestheloadedarea,andtheloadedareamaybe:
A.theareaoftheindividualfootingsiffootingwidelyspaced
B.wherespacingbetweentheindividualfootingislessthan3timesfootingwidthorwhere
floorloadingissignificant,theloadedareashouldbetheplanarea
C.Theareaofafoundationraft
ForPiles
▪Uptohardstratum
▪Uptoatleast4-5timesofthepilediameterbelowtheintendedpilelength

Planning/Scope of SI
DepthofBoringasPerASCE(1972)
Theapproximaterequiredminimumdepthoftheboringsshouldbepredetermined.The
estimateddepthscanbechangedduringthedrillingoperation,dependingonthesubsoil
encountered(e.g.,Rock).
Todeterminetheapproximaterequiredminimumdepthofboring,engineersmayusetherules
establishedbytheAmericanSocietyofCivilEngineers(ASCE1972):
1.Determinethenetincreaseofstress,underafoundationwithdepthasshowninthe
Figure.
2.Estimatethevariationoftheverticaleffectivestress,??????
�

,withdepth.
3.Determinethedepth,D=D
1,atwhichthestressincreaseΔ??????isequalto(1/10)q
o(q
o=
estimatednetcontactstressonthefoundation).
4.Determinethedepth,D=D
2,atwhichΔ??????/??????
�

=0.05.
5.Determinethedepth(D=D
3)whichisthedistancefromthelowerfaceofthefoundation
tobedrock(ifencountered).
6.Thesmallerofthethreedepths(D
1,D
2,andD
3)istheapproximaterequiredminimum
depthofboring.

Depth of Boring

Depth of Boring
Determining the value of vertical effective stress (??????�′):
●The value of (σo′) always calculated from the ground surface to the required depth
Determining the increase in vertical effective stress(Δ??????′):
●The value of (Δσ′) always calculated from the lower face of the foundation
●An alternative approximate method can be used (2:1 Method). According to this method, the value
of (Δσ′) at depth (D) is:
P = the load applied on the foundation (kN).
A = the area of the stress distribution at ���????????????(??????).
Notethattheaboveequationisbasedontheassumption
thatthestressfromthefoundationspreadsoutwitha
vertical-to-horizontalslopeof2:1.

Depth of Boring
If the foundation is circular, the value of (Δσ′) at depth (D) can be determined as following:
P = the load applied on the foundation (kN).
A = the area of the stress distribution at ���????????????(??????).

Example
Site investigation is to be made for a structure of 100 m length and 70 m width. The soil profile
is shown below, if the structure is subjected to 200 kN/m
2
. What is the approximate depth of
borehole. (Take ??????
w=10 kN/m
3
).

Solution
1.DeterminationofthedepthD1)atwhichtheeffectiveincreaseΔ??????

=Τ110??????
Δ??????

=Τ110×200=20??????????????????
Δσ
??????=
??????
??????
=
1.4×10
6
70+??????
1100+??????
1
=20
??????
1=180??????
2.DeterminationofthedepthD
2,atwhichΔ??????/??????
�

=0.05.
??????
�

=??????
2??????
�??????�−??????
�=??????
218−10=8??????
2
Δσ
??????=0.05??????
�

=0.4??????
2
Δσ
??????=
??????
??????
=
1.4×10
6
70+??????
2100+??????
2
=0.4??????
2
??????
2=101.4??????
??????
1=180??????;??????
2=101.4??????and??????
3=130??????
D=101.4m(thesmallest)

Sowers Methods for number and depth of Borings

Sowers Methods for number and depth of Borings

Sowers Methods for number and depth of Borings
●If the preceding rules are used, the depths of boring for a building with a width of 30 m will
be approximately the following, according to Sowers and Sowers (1970):

Method Proposed by Cernica

Planning/Scope of SI
Embankments:ASCErecommends
▪1.5to2timestheheightofembankments
▪Depthshouldbesufficienttopossibleshearfailureandprobablesettlement
Dams:depthshouldbesuchtoexploreallstratathroughwhichpipingandseepagemayoccur
andsomeboringsuptorockbed(min3mintotherock)
Roads:Explorationupto2-3mbelowtheformationlevel
Runways:5-6mbelowtheformationlevel
PipeLines:Depthbelowinvertleveloftheorderof1.5-2mmaybesufficient
Tunnels:Relativelytodeeperdepthasthelevelofthetunnelmaybelowered.

Example of Planning SI program

Economics of SI

Methods of Eploration

Open Methods
TestPits:
▪Openexcavation(1.5-2.5deep&approximate1mwide)
▪Suitablefornearsurfaceevaluation,samplingandtesting
▪Visualinspection
▪Excavatedbyhandormachine
▪Forsmallprojectswherefoundationlevel<2m
▪Blocksamples
▪Forpreliminaryinvestigation
▪Itisrelativelyfastandinexpensive

Open Methods

Methods of Boring
Theboringmethodsareusedforexplorationatgreaterdepthswheredirectmethodsfail.
Theyprovidebothdisturbedaswellasundisturbedsamplesdependinguponthemethodof
boring.
Inselectingtheboringmethodforaparticularjob,considerationshouldbemadeforthe
following:
▪Thematerialstobeencounteredandtherelativeefficiencyofthevariousboringmethods
insuchmaterials
▪Theavailablefacilityandaccuracywithwhichchangesinthesoilandgroundwater
conditionscanbedetermined
▪Possibledisturbanceofthematerialtobesampled

Methods of Boring
Thedifferenttypesofboringmethodsare:
1.Augerboring
2.Continuoussampling
3.Washboring
4.Rotarydrilling
5.Percussiondrilling

Boreholes
Therightchoiceofmethoddependson:
▪Groundcondition:presenceofhardclay,gravel,rock.
▪Ground-watercondition:presenceofhighground-watertable(GWT).
▪Depthofinvestigation
▪Siteaccess

Auger boring
▪It'samethodofsubsurfaceexplorationthatusesarotatingscrew-liketool(auger)to
excavatesoilandrocks,thuscollectingsamplesandinformationaboutthesubsurface.
▪Handoperatedorpowerdrivenaugersmaybeused.
▪SuitableinallsoilsaboveGWTbutonlyincohesivesoilbelowGWT.

Auger boring

Wash Boring
▪Itisapopularmethodduetotheuseoflimitedequipment.
▪Theadvantageofthismethodistheuseofinexpensiveandeasilyportablehandlingand
drillingequipment.
▪Amethodofsubsurfaceexplorationthatusesarotatingdrillbitandahigh-pressurejetof
watertoexcavateandremovesoilandrocks,collectingsamplesandinformationaboutthe
subsurfaceconditions.
▪Applications:Usefulinsoft,unconsolidatedsoils,especiallywheredeeppenetrationis
needed.

Wash Boring

Rotary Drilling
▪Rotarydrillingisamethodusedforboringholesintothegroundbyrotatingadrillingbit
thatcutsandgrindsthesubsurfacematerials.Itiscommonlyusedfordeepboreholesinsoil,
softrock,andhardrockformations.
▪Arotatingbitisattachedtothedrillpipeandcontinuouslyrotatestocut,grind,orcrush
thesoilorrock.
▪Acirculatingdrillingfluid(mudorwater)ispumpeddownthedrillpipeto:
oCoolandlubricatethebit.
oCarrycuttingstothesurface.
oStabilizetheboreholewalls.
▪Themudwithdrilledfragments(cuttings)returnstothesurfacethroughtheannularspace
betweenthedrillpipeandboreholewalls.
▪Rotarydrillingisusedtocollectsoilandrockstratasamples,ortoformdeepobservation
boreholesaspartofGeotechnicalandEnvironmentalSiteinvestigations.
▪Rotarydrillingisafastdrillingtechniquethatadvancesaboreholeusingimpactenergyplus
rotation.

Rotary Drilling

Percussion Drilling
●Percussiondrillingisemployedwhenaugerorwashboringisnotpossibleinverystiffsoil
orrock.Italsocanbeusedinmostsoiltypes.
●Heretheadvancementofaholeisachievedbyalternativelyliftinganddroppingaheavy
cuttingorhammeringbitthatisattachedtoaropeorcablethatisloweredintoanopenhole
orinsideatemporarycasing(casingsarehollowcylindricalpipesusedforboreholestability
andtopreventthelossofdrillingfluidthroughtheboreholes).
●Percussiondrillinginvolvesrepeatedlyraisinganddroppingaheavydrillingbittobreakup
soilandrockformations.Thecrushedmaterialmixeswithwatertoformaslurry,whichis
thenremovedfromtheboreholetoallowfurtherprogress.

Percussion Drilling

Soil Sampling
NeedforSoilSampling
▪Asatisfactorydesignofafoundationdependsupontheaccuracywithwhichthevarioussoil
parametersrequiredforthedesignareobtained.
▪Theaccuracyofthesoilparametersdependsupontheaccuracywithwhichrepresentative
soilsamplesareobtainedfromthefield.
▪Samplingiscarriedoutinorderthatsoilandrockdescription,andlaboratorytestingcanbe
carriedout.
▪Laboratoryteststypicallyconsistof:
oIndextests(forexample,specificgravity,watercontent,etc.)
oClassificationtests(forexample,Atterberg’slimittestsonclayeysoil)
oTeststodetermineengineeringdesignparameters(forexamplestrength,
compressibility,andpermeability).

Soil Sampling
Factorstobeconsideredwhilesamplingsoil
▪Samplesshouldberepresentativeofthegroundfromwhichtheyaretaken.
▪Theyshouldbelargeenoughtocontainrepresentativeparticlessizes,fabric,andfissuring
andfracturing.
▪Theyshouldbetakeninsuchawaythattheyhavenotlostfractionsoftheinsitusoil(for
example,coarseorfineparticles).
▪Wherestrengthandcompressibilitytestsareplanned,theyshouldbesubjecttoaslittle
disturbanceaspossible.

Soil Sampling
Non-RepresentativeSoilSamples
▪Non-representativesoilsamplesarethoseinwhichneitherthein-situsoilstructure,moisture
contentnorthesoilparticlesarepreserved.
▪Theycannotbeusedforanytestsasthesoilparticleseithergetsmixeduporsomeparticles
maybelost.
▪Samplesthatareobtainedthroughwashboringorpercussiondrillingareexamplesofnon-
representativesamples

Soil Sampling
Representative Soil Samples
There are two types of samples:
▪Disturbed Soil Samples
▪Undisturbed Soil Samples

Disturbed Soil Samples
Disturbedsoilsamplesarethoseinwhichthein-situsoilstructureandmoisturecontentarelost,
butthesoilparticlesareintact.
▪Theyarerepresentative.
▪Theycanbeusedforthefollowingtypesoflaboratorysoiltests:
○grainsizeanalysis
○atterberglimits
○specificgravity
○compactiontests
○moisturecontent
○organiccontentdetermination
▪ThemajorequipmentusedtoobtaindisturbedsamplesisSplitSpoon

Disturbed Soil Samples
▪ThemajorequipmentusedtoobtaindisturbedsamplesisSplitSpoon

Undisturbed Soil Samples
Undisturbedsoilsamplesarethoseinwhichthein-situsoilstructureandmoisturecontentare
preserved.
▪Theyarerepresentativeandalsointact.
▪Theseareusedforthefollowingtypesoflaboratorysoiltests:
oConsolidationtests.
oHydraulicConductivitytests.
oShearStrengthtests.
▪Thesesamplesaremorecomplexandexpensive,andtheyaresuitableforclays,howeverin
sand,itisverydifficulttoobtainundisturbedsamples.
▪ThemajorequipmentusedtoobtainundisturbedsampleisShelbytube(thin-walledtube)
andpistonsampler.

Undisturbed Soil Samples

Degree of Disturbance
Ifwewanttoobtainasoilsamplefromanysite,thedegreeofdisturbanceforasoilsampleis
usuallyexpressedas:
D
o=outsidediameterofthesamplingtube.
D
i=insidediameterofthesamplingtube.
If(A
R)≤10%→thesampleisundisturbed
If(A
R)>10%→thesampleisdisturbed

GROUNDWATER

IN-SITU TESTS
●The ground is tested in-placeby instruments that are inserted in or penetrate the ground.
●In-situ tests are normally associated with tests for which a borehole either is unnecessary or
is only an incidental part of the overall test procedure, required only to permit insertion of
the testing tool or equipment.
●Improvements in apparatus, instrumentation, and technique of deployment, data acquisition
and analysis procedure have been significant.

IN-SITU TESTS
▪Standardpenetrationtest-SPTforbearingstrengthprediction
▪DynamicconepenetrationLighttest(DPL)-forstrengthprediction
▪Dynamicconepenetrationtest(DCP)-forCBRpredictionsandlayerthickness
▪Plateloadtest-usedtodeterminethebearingcapacityandsettlementofsoilsunderagiven
load.
▪TheConePenetrationTest(CPT)-providesvaluableinformationonseveralsoilproperties,
includingundrainedshearstrength,soilsensitivity,relativedensity,stiffness,andelastic
modulus.ThesepropertiesarederivedusingempiricalcorrelationsbasedonmeasuredCPT
parameterssuchastipresistance(qₜ),sleevefriction(fₛ),andporewaterpressure(u).
▪Shearvanetest-forshearstrengthprediction
▪FlatDilatometerTest(DMT)-usedtoassesssoilstiffness,lateralstress,andstrength.
▪PressuremeterTest(PMT)-usedtomeasurein-situstress-strainbehaviorofsoilsandrocks.

IN-SITU TESTS

IN-SITU TESTS
Advantages
▪Testsarecarriedoutinplaceinthenaturalenvironmentwithoutsamplingdisturbance,
whichcancausedetrimentaleffectsandmodificationstostresses,strains,drainage,fabric
andparticlearrangement.
▪Continuousprofilesofstratigraphyandengineeringproperties/characteristicscanbe
obtained.
▪Detectionofplanesofweaknessanddefectsaremorelikelyandpractical.
▪Methodsareusuallyfast,repeatable,producelargeamountsofinformationandarecost
effective.
▪Testscanbecarriedoutinsoilsthatareeitherimpossibleordifficulttosamplewithoutthe
useofexpensivespecializedmethods.
▪Alargevolumeofsoilmaybetestedthanisnormallypracticableforlaboratorytesting.This
maybemorerepresentativeofthesoilmass.

IN-SITU TESTS
Disadvantages
▪Samplesarenotobtained;thesoiltestedcannotbepositivelyidentified.Theexceptionto
thisistheSPTinwhichasample,althoughdisturbed,isobtained.
▪Thefundamentalbehaviorofsoilsduringtestingisnotwellunderstood.
▪Drainageconditionsduringtestingarenotknown.
▪Consistent,rationalinterpretationisoftendifficultanduncertain.
▪Thestresspathimposedduringtestingmaybearnoresemblancetothestresspathinduced
byfull-scaleengineeringstructure.
▪Mostpush-indevicesarenotsuitableforawiderangeofgroundconditions.
▪Somedisturbanceisimpartedtothegroundbytheinsertionorinstallationoftheinstrument.
▪Thereisusuallynodirectmeasurementofengineeringproperties.Empiricalcorrelations
usuallyhavetobeappliedtointerpretandobtainengineeringpropertiesanddesigns

STANDARD PENETRATION TEST (SPT)
Definition
▪Thisempiricaltestconsistsofdrivingasplit
spoonsampler,withanoutsidediameterof50
mm,intothesoilatthebaseofaborehole.
▪Drivageisaccomplishedbyatriphammer,
weighingis622.72N(63.5kg),fallingfreely
throughadistanceof76.2cmontothedrivehead,
whichisfittedatthetopoftherods.
▪Thesplit-spoonisdriventhreetimesfora
distanceof15cmintothesoilatthebottomof
theborehole.
▪Thenumberofblowsrequiredtodrive(only)the
lasttwo15cmarerecorded.Theblowcountis
referredtoastheSPTNumber,SPT-N“N”.

STANDARD PENETRATION TEST (SPT)

STANDARD PENETRATION TEST (SPT)

SPT (CORRECTION TO N VALUE)
▪There are several factors contribute to the variation of the standard penetration number (N)
at a given depth for similar profiles. Among these factors are the SPT hammer efficiency,
borehole diameter, sampling method, and rod length.
▪In the field, the magnitude of hammer efficiency can vary from 30 to 90%, the standard
practice now is to express the N-value to an average energy ratio of 60% (N60), so
correcting for field procedures is required as following:
N=measured penetration number.
N
60=standard penetration number, corrected for the field conditions.
η
H=hammer efficiency (%).
η
B=correction for borehole diameter.
η
S=sampler correction.
η
R=correction for rod length.

SPT (CORRECTION TO N VALUE)

Correction for Effective Overburden Pressure

SPT (N
60CORRELATIONS)
N
60can be used for calculating some important parameters such as:
Cohesive soils
oConsistency Index (CI)
oUndrained shear strength (Cu)
oOverconsolidationratio (OCR)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)
N
60can be used for calculating some important parameters such as:
Granular soils
○Relative Density (D
r)
○Angle of internal friction (??????)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

SPT (N
60CORRELATIONS)

VANE SHEAR TEST (VST)
Vanesheartestisusedtoevaluatethein-situundrainedshearstrength(c
u)ofsofttostiffclays
andsilts.Bothpeakandremoldedstrengthscanbemeasuredandtheirratioistermedsoil
sensitivity.
•A four-bladed vane is inserted into the soil and rotated at a slow, constant speed.
•The torque required to shear the soil is measured and used to calculate undrained shear
strength.
•It is useful for assessing soil stability in foundation design, embankments, and slopes.
AdvantagesofVST:
oSimpletestandequipment
oLonghistoryofuseinpractice
DisadvantagesofVST:
oLimitedapplicationtosofttostiffclaysandsilts
oSlowandtime-consuming
oRawc
uvaluesneed(empirical)correction

VANE SHEAR TEST (VST)
VSTconsistsofinsertingasimplefour-bladedvaneintoeitherclayorsiltandrotatingthe
deviceaboutaverticalaxisandmeasuringthetorque.
Limitequilibriumisusedtorelatethemeasuredtorquetotheundrainedshearstrength
mobilized.Bothpeakandremoldedstrengthscanbemeasured.

VANE SHEAR TEST (VST)

Cone Penetration Test (CPT)
TheConePenetrationTest(CPT)isanin-situgeotechnicaltestingmethodusedtodetermine
soilproperties,stratigraphy,andengineeringparameters.Itprovidesacontinuousprofileofsoil
resistanceandiswidelyusedforfoundationdesign,soilclassification,andliquefaction
assessment.

PRESSUREMETER TEST (PMT)
●Thepressuremetertestcanbeusedtoevaluatethestress-strainresponseofawiderangeof
soilsandrock.

Rock Sampling (Coring)
▪Rocksamplesarecalled“rockcores”,
andtheyarenecessaryifthesoundness
oftherockistobeestablished.
▪Smallcorestendtobreakupinsidethe
drillbarrel.
▪Largercoresalsohaveatendencyto
breakup(rotateinsidethebarreland
degrade),especiallyiftherockissoftor
fissured.

Rock Sampling (Coring)
▪Coringisdonewitheithertungsten
carbideordiamondcorebits.
▪Rocksampleriscalled“corebarrel”
whichusuallyhasasingletube.
▪Doubleortripletubecorebarrelisused
whensamplingofweatheredorfractured
rock.

Rock Sampling (Coring)

Rock Sampling (Coring)
▪Corestendtobreakupinsidethedrill
barrel,especiallyiftherockissoftor
fissured.
▪Corerecoveryparametersareusedto
describethequalityofcore.
▪Lengthofpiecesofcoreareusedto
determine:
oCoreRecoveryRatio(Rr)
oRockQualityDesignation(RQD)

Rock Sampling (Coring)
▪RQD(RockQualityDesignation)isa
measureofthequalityofrockcore
samplesobtainedfromdrilling.
▪Itiscommonlyusedingeotechnicaland
miningengineeringtoassessrockmass
integrityandsuitabilityforconstruction
orexcavationprojects.

Rock Sampling (Coring)

Rock Sampling (Coring)

Example on Core recovery & RQD

BORING LOGS

BORING LOGS

GEOTECHNICAL REPORT
▪Uponcompletionofthegeotechnicalinvestigationandanalysis,theinformationand
findingsmustbecompiledinastandardreportformat.
▪Thereportservesasthepermanentrecordofallgeotechnicaldataknowntobepertinentto
theprojectandisreferredtothroughoutthedesign,construction,andservicelifeofthe
project.
▪ThedataandrecommendationsaretypicallycompiledinaGeotechnicalReport.Theintent
oftheGeotechnicalReportistopresentthedatacollectedinaclearmanner,todraw
conclusionsfromthedata,andtomakerecommendationsforthegeotechnicalaspectsofthe
project.
▪Theprimaryclientsthatusethereportareroadwaydesigners,BridgeEngineers,
constructionpersonnel,andcontractors.

Geophysical Exploration
▪Geophysical exploration uses physical methods (seismic, gravitational, magnetic, electrical,
and electromagnetic) to measure the Earth's subsurface properties, helping to detect and
locate geological features and resources like ore deposits, hydrocarbons, and groundwater.
▪Although boring and test pits provide definite results but they are time consuming and
expensive.
▪Subsurface conditions are known only at the bore or test pit location.
▪The subsurface conditions between the boring need to be interpolated or estimated.
▪Geophysical methods are more quick and cheaper.
▪They provide thorough coverage of the entire area.
▪The results of Geophysical testing however are less definitive and require subjective
interpretation.
▪Therefore, both methods are important. In case geophysical testing is major in scope, few
borings and sampling will be required for accurate determination of soil properties.
▪If boring is major in scope, then few geophysical lines will be required to know the
conditions in-between the borings.

Geophysical Exploration

Geophysical Exploration

Geophysical Test Methods

Subsoil Exploration Report
Tags