Graphical method

zanzrukiya 929 views 27 slides Jul 17, 2020
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

Graphical Method of Linear Programming Problem


Slide Content

Operation Research
Graphical Method
Prof. V. D. Zanzrukiya
Department of Computer Science
Smt. C. K. Patel M.Sc.(CA & IT) College
Kadi(Gujarat) -INDIA
[email protected]

Definition of Operation Research
•Operationresearchistheapplicationofthemethodsofscienceto
complexproblemsinthedirectionandmanagementoflarge
systemsofmen,machines,materialsandmoneyinindustry,
business,governmentanddefence.Thedistinctiveapproachisto
developascientificmodelofthesystemincorporating
measurementsoffactorssuchaschanceandrisk,withwhichto
predictandcomparetheoutcomesofalternativedecisions
strategiesorcontrols.Thepurposeistohelpmanagementin
determiningitspolicyandactionsscientifically.
-Operation Research Society, UK
Prof. V. D. Zanzrukiya

General Structure of Linear Programming Model
•ThegeneralstructureofL.P.Modelconsistsofthreebasiselementsor
components
1.Decisionvariables(Activities)
2.Theobjectivefunction(ORGoalFunction)
3.TheConstraints
Inourdaytodaylifeorinanindustrialcompanytherearecertain
problemsinwhichobjectiveslikeprofit,cost,revenue,distance,time,etc.are
eithertobemaximizedorminimizedsubjecttocertainconditionsovercertain
factors(variables).Ifsuchanobjectiveaswellasconditionscanbewrittenas
Linearfunctionintermsofcertainvariablesthensuchaproblemiscalled
LinearProgrammingProblem.
Prof. V. D. Zanzrukiya

•General L.P. Model can be described as follows:
Find the values of x
1,x
2, …, x
nso as to optimize (maximize or minimize)
Z = c
1x
1+ c
2x
2+ … + c
nx
n
Subject to the constraints
a
11x
1+ a
12x
2+ … + a
1nx
n(≤, =, ≥) b
1
a
21x
1+ a
22x
2+ … + a
2nx
n(≤, =, ≥) b
2
⋮ ⋮ ⋮ ⋮ ⋮
a
m1x
1+ a
m2x
2+ … + a
mnx
n(≤, =, ≥) b
m
Such that x
1,x
2, …, x
n≥ 0
(1) is called the objective (goal) function
(2) Represents set of constraints
(3) Represents the non-negative constraints
------(1)
------(2)
------(3)
Prof. V. D. Zanzrukiya

Remarks
i.x
1,x
2, …, x
nare called decision variables.
ii.The constants c
1,c
2, …, c
nin the objective functions are called cost
coefficients.
iii.Constants b
1,b
2, …, b
min the set of constraints are called the right hand
side constants.
iv.In each and every constrains of set (2) one and only one of the relation ≤, =
or ≥ holds true. Different relations may occur in different constraints.
v.Constants a
i’s in set of constraints (2) are called input-output coefficients
or technological coefficients.
Prof. V. D. Zanzrukiya

Formulation of LPP
Prof. V. D. Zanzrukiya

Problem:
AfirmmanufacturestwotypesofproductA&Bandsellsthemataprofitof`2and`3
respectively.EachproductisprocessedontwomachinesG&H.TypeArequires1minute
processingtimeonmachineGand2minutesofprocessingtimeonmachineH.TypeB
requires1minuteofprocessingoneachmachine.MachineGisavailablefornotmorethan6
hours40minuteswhilemachineHisavailablefor10hoursduringanyworkingday.How
manyproductofeachtypeshouldthefirmproduceofeachdayinordertogetmaximum
profit?FormulatetheLPP.
Solution:
Thegivendatacanbetubulizedinthefollowingform.
Machine
Time of Product in Minute
Avaibility of Time
A B
G 1 1 400
H 2 1 600
Profit per Unit (`) 2 3
Prof. V. D. Zanzrukiya

Continue…
Letthefirmmanufacturex
1unitsoftheproductoftypeAandx
2unitsoftheproduct
oftypeB.
Findx
1andx
2inorderto
maximizeZ=2x
1+3x
2
Subjecttotheconstraints
x
1+x
2≤400
2x
1+x
2≤600
andx
1,x
2≥0
Prof. V. D. Zanzrukiya

Linear Programming
The Graphical Method
Prof. V. D. Zanzrukiya

Introduction
AnoptimalaswellasafeasiblesolutiontoanLPproblemisobtainedby
choosingavaluefromseveralpossiblevaluesofdecisionvariablesx
1,x
2,…,x
n,
theonesetofvaluesthatsatisfiesthegivensetofconstrainssimultaneouslyand
alsoprovidestheoptimal(maximumorminimum)valueofthegivenobjective
function.
ForLPproblemsthathaveonlytwovariables,itispossiblethatthe
entiresetoffeasiblesolutionscanbedisplayedgraphicallybyplottinglinear
constraintsonagraphpaperinordertolocatethebest(optimal)solution.The
Techniqueusedtoidentifytheoptimalsolutioniscalledthegraphicalsolution
approachortechniqueforanLPproblemwithtwovariables.
Prof. V. D. Zanzrukiya

Important Definition
Slack Variable
Anon-negativevariablewhichconverts≤typeconstraintofaLPPintotheequationis
calledaslackvariablesuchavariableisaddedtotheLHSof≤typeconstraints.
Example:
2x
1+x
2≤600
2x
1+x
2+S=600
Surplus Variable
Anon-negativevariablewhichconverts≥typeconstraintofaLPPintotheequationis
calledasurplusvariablesuchavariableissubtractedfromtheLHSof≥typeconstraints.
Example:
2x
1+3x
2≥900
2x
1+3x
2–S=900
Slack Variable
Surplus Variable
Prof. V. D. Zanzrukiya

Solution
Thesetofvaluesofdecisionvariablesx
j(j=1,2,…,n)thatsatisfytheconstraintsofan
LPproblemissaidtoconstitutethesolutiontothatLPproblem
FeasibleSolution
Thesetofvaluesofdecisionvariablesx
j(j=1,2,…,n)thatsatisfyalltheconstraintsand
non-negativityconditionsofanLPproblemsimultaneouslyissaidtoconstitutethefeasible
solutiontothatLPproblem
InfeasibleSolution
Thesetofvaluesofdecisionvariablesx
j(j=1,2,…,n)thatdonotsatisfyallthe
constraintsandnon-negativityconditionsofanLPproblemsimultaneouslyissaidtoconstitute
theinfeasiblesolutiontothatLPproblem
BasicSolution
Forasetofmsimultaneousequationsinnvariables(n>m),asolutionobtainedby
setting(n–m)variablesequaltozeroandsolvingforremainingmequationsinmvariablesis
calledabasicsolution.
The(n–m)variableswhosevaluedidnotappearinthissolutionarecallednon-basic
variablesandtheremainingmvariablesarecalledbasicvariables.
Prof. V. D. Zanzrukiya

Basic Feasible Solution
AfeasiblesolutiontoanLPproblemwhichisalsothebasicsolutioniscalledthebasic
feasiblesolution..Thatis,allbasicvariablesassumenon-negativevalues.
Basicfeasiblesolutionsareoftwotypes:
(a)Degenerate:Abasicfeasiblesolutioniscalleddegenerateifthevalueofatleast
onebasicvariableiszero.
(b)Non-degenerate:Abasicfeasiblesolutioniscallednon-degenerateifvaluesofallm
basicvariablesarenon-zeroandpositive.
OptimumBasicFeasibleSolution
Abasicfeasiblesolutionthatoptimizes(maximizesorminimizes)theobjective
functionvalueofthegivenLPproblemiscalledanoptimumbasicfeasiblesolution.
UnboundedSolution
Asolutionthatcanindefinitelyincreaseordecreasethevalueoftheobjectivefunction
oftheLPproblemiscalledanunboundedsolution.
Prof. V. D. Zanzrukiya

GRAPHICAL SOLUTIONMETHODS OFLPPROBLEM
•ExtremePointSolutionMethod
Inthismethod,thecoordinatesofallcorner(orextreme)pointsofthefeasibleregion(spaceor
area)aredeterminedandthenvaluesoftheobjectivefunctionatthesepointsarecomputed
andcomparedbecausethemathematicaltheoryofLPstatesthatanoptimalsolutiontoany
LPproblemalwayslieatoneofthecorner(extreme)pointsofthefeasiblesolutionspace.
Thestepsofthemethodaresummarizedasfollows:
Step-1:DevelopanLPmodel
GeneratethemathematicalmodelofthegivenLPproblem.
Step-2:Plotconstraintsongraphpaperanddecidethefeasibleregion
(a)Replace≤and≥signto=ineachconstraint(inequalitytoequality).
(b)Findthetwopointsofeachlineanddrawitongraph.
Prof. V. D. Zanzrukiya

Continue…
(c)Forinequalitysignofeachconstraint,decidetheareaoffeasiblesolution.
(For≤constraintitisleftsideofthelineandfor≥constraintitisrightsideoftheline.
Soforeasyunderstanding,takeanypointofleftsideoflineandifitsatisfiesthe
constraintthenmarktheleftsideareaotherwisemarktherightsidearea)
(d)Shadethecommonportionofthegraph.
Step-3:Examineextremepointsofthefeasiblesolutionspacetofindanoptimal
solution
(a)Decidetheextremepoints(cornerpoints)ofthefeasibleregion.
(b)Calculatetheobjectivefunctionvalueateachextremepoints.
(c)Findoutminormaxvalue(optimalvalue)oftheobjectivefunction.
Prof. V. D. Zanzrukiya

Examples on Maximization LP Problem
Example:Usethegraphicalmethodtosolve
thefollowingLPproblem
Maximize??????=15??????
1+10??????
2
Subjecttotheconstraints
4??????
1+6??????
2≤360
3??????
1≤180
5??????
2≤200
and ??????
1,??????
2≥0
Solution:
HereGivenLPproblemis
Maximize??????=15??????
1+10??????
2
Subjecttotheconstraints
4??????
1+6??????
2≤360
3??????
1≤180
5??????
2≤200
and ??????
1,??????
2≥0
Prof. V. D. Zanzrukiya

To draw a constraint
4??????
1+6??????
2≤360------(1)
Treat it as 4??????
1+6??????
2=360
When ??????
1=0then ??????
2=?
⇒40+6??????
2=360
⇒6??????
2=360
⇒??????
2=
360
6
=60
∴??????
1,??????
2=(0,60)
When ??????
2=0then ??????
1=?
⇒4??????
1+60=360
⇒4??????
1=360
⇒??????
1=
360
4
=90
∴??????
1,??????
2=(90,0)
To draw a constraint
3??????
1≤180------(2)
Treat it as 3??????
1=180
⇒3??????
1=180
⇒??????
1=
180
3
=60
Here Line is parallel to Y-axis
To draw a constraint
5??????
2≤200------(3)
Treat it as 5??????
2=200
⇒5??????
2=200
⇒??????
2=
200
5
=40
Here Line is parallel to X-axis
Prof. V. D. Zanzrukiya

Prof. V. D. Zanzrukiya
??????
1
??????
2
0 20 40 60 80 100
100
80
60
40
20
(0, 60)
(90, 0)
1
1 4??????
1+6??????
2=360
2
2 3??????
1=180
3
3
5??????
2=200
Feasible
Region
O(0, 0)
A(60, 0)
B(60, 20)
C(30, 40)D(0, 40)

Extreme Point
Coordinates
??????
1,??????
2
Objective Function
??????=15??????
1+10??????
2
O (0, 0) 15(0) + 10(0) = 0
A (60, 0) 15(60) + 10(0) = 900
B (60, 20) 15(60) + 10(20) = 1100
C (30, 40) 15(30) + 10(40) = 850
D (0, 40) 15(0) + 10(40) = 400
Prof. V. D. Zanzrukiya
The optimal solution to the given LP problem is ??????
1=60, ??????
2=20 and Maximize
Z=1100

Examples on Minimization LP Problem
Example:Usethegraphicalmethodtosolve
thefollowingLPproblem
Minimize??????=3??????
1+2??????
2
Subjecttotheconstraints
5??????
1+??????
2≥10
??????
1+??????
2≥6
??????
1+4??????
2≥12
and ??????
1,??????
2≥0
Solution:
HereGivenLPproblemis
Minimize??????=3??????
1+2??????
2
Subjecttotheconstraints
5??????
1+??????
2≥10
??????
1+??????
2≥6
??????
1+4??????
2≥12
and ??????
1,??????
2≥0
Prof. V. D. Zanzrukiya

To draw a constraint
5??????
1+??????
2≥10------(1)
Treat it as 5??????
1+??????
2=10
When ??????
1=0then ??????
2=?
⇒50+??????
2=10
⇒0+??????
2=10
⇒??????
2=10
∴??????
1,??????
2=(0,10)
When ??????
2=0then ??????
1=?
⇒5??????
1+0=10
⇒??????
1=
10
5
=2
∴??????
1,??????
2=(2,0)
To draw a constraint
??????
1+4??????
2≥12------(3)
Treat it as ??????
1+4??????
2=12
When ??????
1=0then ??????
2=?
⇒0+4??????
2=12
⇒4??????
2=12
⇒??????
2=
12
4
=3
∴??????
1,??????
2=(0,3)
When ??????
2=0then ??????
1=?
⇒??????
1+4(0)=12
⇒??????
1+0=12
⇒??????
1=12
∴??????
1,??????
2=(12,0)
Prof. V. D. Zanzrukiya
To draw a constraint
??????
1+??????
2≥6------(2)
Treat it as ??????
1+??????
2=6
When ??????
1=0then ??????
2=?
⇒0+??????
2=6
⇒??????
2=6
∴??????
1,??????
2=(0,6)
When ??????
2=0then ??????
1=?
⇒??????
1+0=6
⇒??????
1=6
∴??????
1,??????
2=(6,0)

Prof. V. D. Zanzrukiya
??????
1
??????
2
0 2 4 6 8 10 12 14
10
8
6
4
2
1
1 5??????
1+??????
2=10
2
2 ??????
1+??????
2=6
3
3
??????
1+4??????
2=12
A(12, 0)
B(4, 2)
C(1, 5)
D(0, 10)
Feasible
Region

Extreme Point
Coordinates
??????
1,??????
2
Objective Function
??????=�??????
1+�??????
2
A (12, 0) 3(12) + 2(0) = 36
B (4, 2) 3(4) + 2(2) = 16
C (1, 5) 3(1) + 2(5) = 13
D (0, 10) 3(0) + 2(10) = 20
Prof. V. D. Zanzrukiya
The optimal solution to the given LP problem is ??????
1=1, ??????
2=5 and Minimize Z = 13

Examples on Mixed Constraints LP Problem
Example:Usethegraphicalmethodtosolve
thefollowingLPproblem
Maximize??????=2??????
1+3??????
2
Subjecttotheconstraints
??????
1+??????
2≤30
??????
2≥3
0≤??????
2≤12
0≤??????
1≤20
??????
1−??????
2≥0
and ??????
1,??????
2≥0
Solution:
HereGivenLPproblemis
Maximize??????=2??????
1+3??????
2
Subjecttotheconstraints
??????
1+??????
2≤30
??????
2≥3
0≤??????
2≤12
0≤??????
1≤20
??????
1−??????
2≥0
and ??????
1,??????
2≥0
Prof. V. D. Zanzrukiya

To draw a constraint
??????
1+??????
2≤30------(1)
Treat it as ??????
1+??????
2=30
When ??????
1=0then ??????
2=?
⇒0+??????
2=30
⇒??????
2=30
∴??????
1,??????
2=(0,30)
When ??????
2=0then ??????
1=?
⇒??????
1+0=30
⇒??????
1=30
∴??????
1,??????
2=(30,0)
To draw a constraint
??????
1−??????
2≥0 ------(5)
Treat it as ??????
1−??????
2=0
⇒??????
1=??????
2
When ??????
1=0then ??????
2=?
⇒??????
2=0
∴??????
1,??????
2=(0,0)
When ??????
2=25then ??????
1=?
⇒??????
1=25
∴??????
1,??????
2=(25,25)
Prof. V. D. Zanzrukiya
To draw a constraint
??????
2≥3------(2)
Treat it as ??????
2=3
Here Line is parallel to X-axis
To draw a constraint
0≤??????
2≤12------(3)
Treat it as ??????
2=12
Here Line is parallel to X-axis
To draw a constraint
0≤??????
1≤20------(4)
Treat it as ??????
1=20
Here Line is parallel to Y-axis

Prof. V. D. Zanzrukiya
??????
1
??????
2
0 5 10 15 20 2530 35
30
25
20
15
10
5
1
1??????
1+??????
2=30
2
2??????
2=3
3
3??????
2=12
4
4??????
1=20
5
5??????
1−??????
2=0
Feasible
Region
A(3, 3) B(20, 3)
C(20, 10)
D(18, 12)E(12, 12)

Extreme Point
Coordinates
??????
1,??????
2
Objective Function
??????=�??????
1+�??????
2
A (3, 3) 2(3) + 3(3) = 15
B (20, 3) 2(20) + 3(3) = 49
C (20, 10) 2(20) + 3(10) = 70
D (18, 12) 2(18) + 3(12) = 72
E (12, 12) 2(12) + 3(12) = 60
Prof. V. D. Zanzrukiya
The optimal solution to the given LP problem is ??????
1=18, ??????
2=12 and Maximize Z = 72
Tags