22 N. K. Bose
[19] J. P. Guiver and N. K. Bose,Polynomial matrix primitive factorization over arbitrary coefficient
field and related results, IEEE Transactions on Circuits and Systems 29 (1982), pp. 649–657.
[20] D. Henrion and A. Garulli (eds.),Positive Polynomials in Control, Springer-Verlag Berlin Hei-
delberg, 2005.
[21] T. Y. Lam,Serre’s Problem on Projective Modules, Springer-Verlag Berlin Heidelberg, 2006.
[22] Z. Lin, L. Xu, and Q. Wu,Applications of Gr¨obner bases to signal and image processing: a
survey, Linear Algebra and its Applications 391 (2004), pp. 169–202.
[23] D. G. Luenberger,Linear and Nonlinear Programming, 2nd. ed., Addison-Wesley Publishing
Company, Reading, MA, 1984.
[24] U. Oberst,Multidimensional constant linear systems, Acta Applicandae Mathematicae (1990),
pp. 1–175.
[25] P. A. Parrilo,Semidefinite programming relaxations for semialgebraic problems, Mathematical
Programming Ser. B 96 (2003), pp. 293–320.
[26] ,Exploiting Algebraic Structure in Sum of Squares Programs, Positive polynomials in
control (D. Henrion and A. Garulli, eds.), Springer, 2005, pp. 181–194.
[27] J. de Pillis,Linear transformations which preserve hermitian and positive semidefinite trans-
formations, Pacific Journal of Mathematics (1967), pp. 129–137.
[28] J. L. Rabinowitsch,Zum Hilbertschen Nullstellensatz, Mathematische Annalen 102 (1929),
pp. 520–521.
[29] G. Regensburger and O. Scherzer,Symbolic Computation for Moments and Filter Coeffcients
of Scaling Functions, Annals of Combinatorics 9 (2005), pp. 223–243.
[30] H. H. Rosenbrock,State-Space and Multivariable Theory, John Wiley & Sons Inc., New York,
NY, 1970.
[31] N. Z. Shor,Class of global minimum bounds of polynomial functions, Cybernetics 23 (1987),
pp. 731–734.
[32] W. Stinespring,Positive functions onC
∗
-algebras, Proceedings of the American Mathematical
Society 6 (1955), pp. 211–216.
[33] M. Wang and C. P. Kwong,On multivariate polynomial matrix factorization problem,Mathe-
matics of Control, Signals and Systems 17 (2005), pp. 297–311.
[34] L. Xu, O. Saito, and K. Abe,Output feedback stabilizability and stabilization algorithms for
2-D systems, Multidimensional Systems and Signal Processing 5 (1994), pp. 41–60.
[35] J. Q. Ying,On the strong stabilizability of MIMOn-dimensional linear systems, SIAM Journal
on Control and Optimization 38 (2000), pp. 313–335.
[36] J. Q. Ying, L. Xu, and Z. Lin,A computational method for determining strong stabilizability of
n-D systems, Journal of Symbolic Computation 27 (1999), pp. 479–499.
[37] E. Zerz,Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and
Information Sciences 256, Springer-Verlag London Limited, London, Great Britain, 2000.
Author information
N. K. Bose, Department of Electrical Engineering,
Pennsylvania State University,
University Park, PA 16203, USA.
Email:
[email protected]