3.A
5
:
cycle shap
ee(2)(3)(4)(5) (2,2) (3,2)
inA
5
? yesno yesno yes yesno
no.1 20 2415
Total|A
5
|= 60 =
1
2
5!.
5 Direct Products
So far, we’ve seen the following examples of finite groups:C
n
, D
2n
, S
n
, A
n
.
We’ll get many more using the following construction.
Recall: ifT
1
, T
2
, . . . , T
n
are sets, theCartesian productT
1
×T
2
×∙ ∙ ∙×T
n
is the set consisting of alln-tuples(t
1
, t
2
, . . . , t
n
) witht
i
2T
i
.
Now letG
1
, G
2
, . . . , G
n
be groups. Form the Cartesian productG
1
×
G
2
× ∙ ∙ ∙ ×G
n
and define multiplication on this set by
(x
1
, . . . , x
n
)(y
1
, . . . , y
n
) = (x
1
y
1
, . . . , x
n
y
n
)
forx
i
, y
i
2G
i
.
DefinitionCallG
1
× ∙ ∙ ∙ ×G
n
thedirect productof the groupsG
1
, . . . , G
n
.
Proposition 5.1Under above defined multiplication,G
1
× ∙ ∙ ∙ ×G
n
is a
group.
Proof
•ClosureTrue by closure in eachG
i
.
•AssociativityUsing associativity in eachG
i
,
[(x
1
, . . . , x
n
)(y
1
, . . . , y
n
)] (z
1
, . . . , z
n
) = (x
1
y
1
, . . . , x
n
y
n
)(z
1
, . . . , z
n
)
= ((x
1
y
1
)z
1
, . . . ,(x
n
y
n
)z
n
)
= (x
1
(y
1
z
1
), . . . , x
n
(y
n
z
n
))
= (x
1
, . . . , x
n
)(y
1
z
1
, . . . , y
n
z
n
)
= (x
1
, . . . , x
n
) [(y
1
, . . . , y
n
)(z
1
, . . . , z
n
)].
•Identityis (e
1
, . . . , e
n
), wheree
i
is the identity ofG
i
.
•Inverseof (x
1
, . . . , x
n
) is (x
−1
1
, . . . , x
−1
n
).
16