Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 1 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
GUIA FACTORIZACION
Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de
factorización, para ello se darán en esta guía algunos ejercicios de factorización para complementar lo
trabajado y explicado en clase, para cada caso de factorización se deberán realizar 10 ejercicios de
práctica en casa. Esta guía será evaluada como trabajo de practica (actitudinal) y será considerado
como trabajo de clase (20%).
Antes de iniciar con el proceso de factorización es importante revisar algunos elementos importantes
que se han estudiado en periodos y grados anteriores.
Propiedades de la Potenciación:
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 2 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
Exponente radical: Como se indica con la igualdad , la radicación es en realidad
otra forma de expresar una potenciación: la raíz de un cierto orden de un número es equivalente a
elevar a dicho número a la potencia inversa. Por esto, las propiedades de la potenciación se cumplen
también con la radicación.
Ejemplo: =
Propiedades que no cumple la potenciación: No es distr ibutiva con respecto a la adición y sustracción,
es decir, no se puede distribuir cuando dentro del paréntesis es suma o resta:
No cumple la propiedad conmutativa: exceptuando aquellos casos en que base y exponente tienen el
mismo valor o son equivalentes. En general
Tampoco cumple la propiedad asociativa:
Potencia de base 10: Para las potencias con base 10, el efecto será
desplazar la coma decimal tantas posiciones como indique el
exponente, hacia la izquierda si el exponente es negativo, o hacia la
derecha si el exponente es positivo.
Ejemplos (derecha):
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 3 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
Propiedades de la radicación:
Las leyes siguientes son verdaderas
para los enteros positivos m y n,
siempre que existan las raíces
indicadas; es decir, siempre que las
raíces sean números reales.
Es frecuente cometer errores cuando
se trabaja con radicales, el más común
de estos es:
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 4 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
FACTOR COMÚN
Sacar factor común consiste en encontrar el elemento común a un conjunto de sumandos, una
operación numérica a veces se simplifica sacando factor común para realizar la operación. Ten
presente la propiedad distributiva y observa los ejemplos para ver cómo se usa el factor común.
EJEMPLO:
????????????+????????????=?????? (??????+??????)
El factor común es a ; es el factor que está incluido en los dos términos; luego multiplicamos el factor
común por lo que queda de los dos términos, es decir, al aplicar la propiedad distributiva de la
multiplicación nos debe dar como resultado de esta operación los dos términos iniciales, por tanto el
término a no debe ser incluido dentro de los paréntesis.
EJEMPLO:
9??????????????????
??????
−3??????
??????
??????
3
??????+12????????????
??????
??????=??????????????????(3????????????−1????????????
3
+4????????????)
Buscamos inicialmente el factor común entre los números, para ello buscamos el Máximo Divisor
Común entre los números, el menor número por el que podemos dividir el 9 , 3, 12; este número es el
3, todos los números se pueden dividir por 3 . Luego busco el factor común entre las letras (parte
literal), es decir los factores que se repiten con su menor exponente en cada uno de los términos,
estas son ?????? y ??????, los tres términos tienen a la vez ?????? y ??????, la z solo la encontramos en el tercer término
y la b solo en el primero y segundo por lo tanto no son factores comunes. Es importante aclarar que
cuando uno de los términos (en este caso el numero 3) es parte del factor común, se debe colocar
entonces 1, para que al aplicar propiedad distributiva, se obtengo como resultado el mismo número
que es factor común.
EJEMPLO:
45??????
5
??????
4
+60??????
4
??????
5
??????
3
−15??????
3
??????
6
+30??????
3
??????
4
??????
5
=
Paso 1: Se extra el factor común. Para ello se halla el MCD
(Máximo Común Divisor) de las cantidades y de los
factores literales.
El MCD de los números es: ?????? ∙ ??????=????????????
En la parte literal: MCD de las letras comunes con menor
exponente es ??????
??????
??????
??????
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 5 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
Por tanto, el factor común de la expresión algebraica es ??????????????????
??????
??????
??????
Paso 2: Una forma de factorizar es dividir cada uno de los términos por el factor común (simplificar)
45??????
5
??????
4
+60??????
4
??????
5
??????
3
−15??????
3
??????
6
+30??????
3
??????
4
??????
5
=??????????????????
??????
??????
??????
�
??????????????????
??????
??????
??????
??????????????????
??????
??????
??????+
??????????????????
??????
??????
??????
??????
??????
??????????????????
??????
??????
??????−
??????????????????
??????
??????
??????
??????????????????
??????
??????
??????+
??????????????????
??????
??????
??????
??????
??????
??????????????????
??????
??????
??????
�
=??????????????????
??????
??????
??????
�????????????
??????
+????????????????????????
??????
−??????
??????
+????????????
??????
�
Recuerda que en cocientes de potencias de igual base se restan los exponentes. Al resolver producto
se debe obtener la expresión inicial.
FACTOR COMÚN DE UN POLINOMIO (CASO ESPECIAL)
Esto sucede cuando el factor común no es un monomio, sino que puede ser un binomio, trinomio o
polinomio. Para factorizar se utiliza el mismo procedimiento que en el caso anterior.
Para resolverlo de manera sencilla basta con tomar el factor común (a
− b), este es el término que se
repite en los términos dados se procede como en el caso anterior, es decir dividir los dos términos por
el factor común, recuerda que cosas
iguales en una división se cancelan, de
cancelar los factores (a
− b),
queda m y n, los que se agrupan
independientemente y este término
multiplicado por el factor común
(verificando la factorización) con
seguridad nos da los términos iniciales.
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 6 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
FACTOR COMÚN POR AGRUPACIÓN DE TÉRMINOS
Se llama factor común por agrupación de términos, si los términos de un polinomio pueden reunirse en
grupos de términos con un factor común diferente en cada grupo. Cuando pueden reunirse en grupos
de igual número de términos se encuentra a cada uno de ellos el factor común. Si queda la misma
expresión en cada uno de los grupos entre paréntesis, se saca este grupo como factor común,
quedando así una multiplicación de polinomios, t ratar desde el principio que nos queden iguales los
términos de los paréntesis nos hará más sencillo el resolver estos problemas.
EJEMPLO 1:
??????????????????+??????????????????−????????????+????????????−????????????+???????????? Ahora hay que agrupar estos términos en factores comunes
(??????????????????−????????????+????????????)+(??????????????????−????????????+????????????)
??????(????????????−??????+??????)+??????(????????????−??????+??????) Saco el factor común a cada de los términos agrupados
Observemos que los términos entre paréntesis son iguales, por tanto se convierten en factor común y
la a y la b se agrupan por separado, así:
(????????????−??????+??????)(??????+??????)
Luego: ??????????????????+??????????????????−????????????+????????????−????????????+????????????=(????????????−??????+??????)(??????+??????)
EJEMPLO 2:
b)y)(a(x
b)y(ab)x(a
by)(aybx)(ax
byaybxax
++
+++
+++
+++
Agrupar en dos paréntesis
En cada paréntesis hacer
factor común monomio luego
factor común polinomio
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 7 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
EJERCICI OS DE PRÁCTICA FACTOR COMUN
Recuerda que estos son los primeros ejercicios que debes resolver, cuando los tengas listos debes
entregarlos, en una hoja bien ordenada y marcada con tu nombre, fecha y grupo, además debes
conservar esta hoja en una carpeta para entregar todo los ejercicios de practica al final del periodo y
calificarla (20% del periodo)
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 8 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
DIFERENCIA DE CUADRADOS
Son llamados cuadrados perfectos aquellas expresiones algebraicas que tienen raíz cuadrada exacta,
en este caso hablamos entonces de dos términos que se restan entre sí pero que además son
cuadrados perfectos. Esta diferencia que caracteriza por tener la siguiente estructura: ??????
??????
− ??????
??????
.
La diferencia de cuadrados perfectos se factoriza como el producto de los términos, uno como suma y
otro como resta, en este tipo de expresiones de debe inicialmente encontrar las raíces cuadradas de
los términos (expresiones algebraicas) así:
??????
??????
− ??????
??????
=(??????+??????)(??????−??????)
√??????
??????
??????
√??????
??????
??????
Buscamos las raíces cuadradas de los términos
?????? ?????? Raíces cuadradas de los dos términos
(??????+??????)(??????−??????) Escribo las raíces de los términos como producto factorizado
Por propiedades de los radicales recuerda que decir
√??????
??????
??????
=??????
????????????⁄
=??????
??????
=??????, la expresión ????????????⁄
(
exponente e índice de la raíz) se divide y el resultado es 1, es decir ??????
??????
y tener esta expresión (??????
??????
)
es lo mismo que tener solo ??????, pues aunque esta siempre tiene como exponente 1 no es necesario
escribirlo.
De la misma forma procedemos para hallar la raíz de ??????
??????
; Por propiedades de los radicales recuerda que
decir
√??????
??????
??????
=??????
????????????⁄
=??????
??????
=??????, la expresión ????????????⁄ ( exponente e índice de la raíz) se divide y el
resultado es 1, es decir
??????
??????
y tener esta expresión ( ??????
??????
) es lo mismo que tener solo ??????, pues aunque
esta siempre tiene como exponente 1 no es necesario escribirlo.
Para verificar que nos haya quedado bien factorizado aplicamos propiedad uniforme sobre el producto
factorizado:
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 9 ~ LIC.EDUCACION BASICA MATEMATICAS (U de A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
EJEMPLO:
Factorizar:
??????− ??????
??????
?????? − ??????
??????
=(??????+??????)(??????−??????)
√??????
??????
�??????
??????
??????
Buscamos las raíces cuadradas de los términos √??????
??????
=?????? y para el segundo
�??????
??????
??????
=??????
????????????⁄
=??????
??????
=??????
?????? ??????
Raíces cuadradas de los dos términos
(??????+??????)(??????−??????) Escribo las raíces de los términos como producto factorizado.
Para verificar si esta expresión si cumple con ser producto de la factorización del término
??????− ??????
??????
,
debemos aplicar propiedad uniforme, como se explicó en el ejemplo anterior, así:
(??????+??????)(??????−??????)=??????+??????−??????−??????
??????
, en esta expresión resultante se cancelan los términos
+??????−?????? , por ser términos iguales con signos diferentes, al hacer esto me queda como resultado:
??????− ??????
??????
???????????? − ??????????????????
??????
=(??????+ ????????????
??????
)(??????− ????????????
??????
)
√????????????
??????
√??????????????????
??????
??????
Buscamos las raíces cuadradas de los términos √????????????
??????
=?????? y para el segundo;
en el numero √????????????
??????
=?????? , y para las letras √??????
??????
??????
=??????
????????????⁄
=??????
??????
; toda la
expresión
√??????????????????
??????
??????
=????????????
????????????⁄
=????????????
??????
?????? ????????????
??????
Raíces cuadradas de los dos términos
(??????+????????????
??????
)(??????−????????????
??????
) Escribo las raíces de los términos como producto factorizado una con más
y otra con menos.
Al verificar me debe dar la expresión inicial, para hacerlo aplico propiedad uniforme sobre el producto
factorizado:
(??????+????????????
??????
)(??????−????????????
??????
)=????????????−??????????????????
??????
+??????????????????
??????
−??????????????????
??????
, se cancelan los términos
azules por ser iguales con signos diferentes, luego el resultado es
????????????− ??????????????????
??????
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 10 ~ LIC.EDUCACION BASICA MATEMATICAS (U de
A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
EJERCICIO DE PRACTICA DIFERENCIA DE CUADRADOS
Factorizar las siguientes expresiones y verificar los resultados obtenidos:
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 11 ~ LIC.EDUCACION BASICA MATEMATICAS (U de
A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
SUMA Y DIFERENCIA DE CUBOS PERFECTOS
Un cubo perfecto es aquella expresión cuya raíz cubica es exacta, para este caso hablamos de dos
términos cúbicos dispuestos en forma de una suma o una resta ??????
??????
+ ??????
??????
ó ??????
??????
− ??????
??????
respectivamente.
Suma de cubos: Este producto notable al factorizarlo se obtiene del producto de los dos factores: el
primero formado por la suma de las bases y el segundo factor formado por el cuadrado de la primera
base, menos el producto de las dos bases más el cuadrado de la segunda base.
Resta de cubos: Es equivalente al producto de dos factores: donde el primer factor lo forma la
diferencia de las bases; y el segundo factor por la suma del cuadrado de la primera base por el
producto de las dos bases, más el cuadrado de la segunda base.
??????
??????
+ ??????
??????
=(??????+??????)(??????
??????
−????????????+ ??????
??????
) ??????
??????
− ??????
??????
=(??????−??????)(??????
??????
+????????????+ ??????
??????
)
Para factorizar esta expresión debemos recordar los cocientes notables:
??????
??????
+ ??????
??????
??????+??????
=??????
??????
−????????????+ ??????
??????
Para el caso de la suma y teniendo en cuenta el resultado de la división anterior se verifica que:
??????
??????
+ ??????
??????
=(??????+??????)(??????
??????
−????????????+ ??????
??????
)
Y en el caso de la resta y basándonos en el resultado de la división anterior s e verifica que:
??????
??????
− ??????
??????
=(??????−??????)(??????
??????
+????????????+ ??????
??????
)
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 12 ~ LIC.EDUCACION BASICA MATEMATICAS (U de
A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
EJEMPLO:
Factorizar: ??????
??????
− ??????
??????
??????
??????
− ??????=(??????−
??????
)(??????
??????
− ????????????+?????? ??????)
??????
√??????
??????
??????
− √??????
??????
??????
buscamos las raices cubicas de ??????
??????
y ??????,
??????
en el caso de la ??????
??????
=√??????
??????
??????
=??????
????????????⁄
=??????
??????
para el caso de la ??????=
??????
√??????
??????
??????
=??????
????????????⁄
=??????
??????
Recuerda que se busca un termino que multiplicado tres veces por si mismo de como resultado los
terminos, estas raices son respectivamente ?????? y , los exponentes 1 no se colocan. ??????
Ya hemos encontrado las raices de los terminos ??????
??????
,?????? ahora debemos factorizar la diferencia de
??????
cubos, para ello hallamos un termino corto que esta conformado por las raices encontradas (??????−) y ??????
otro largo, constituido por un trinomio que se arma de la siguiente manera; el primer termino del
trinomio la forma la primera raiz al cuadrado ??????
??????
, el segundo termino del trinomio lo constituye el
producto de las dos raices (??????)(??????)???????????? y el tercer termino lo constituye la segúnda raiz encontrada =
al cuadrado ??????, ahora el trinomio quedaria asi (??????
??????
− ????????????+
??????
??????). Con respecto a los signos el
??????
termino corto corserva el mismo signo menos (−) para la diferencia de cubos, y los terminos del
trinomio todos son positivos, para el caso de la suma de cubos el termino corto conserva su signo ( +) y
los signos de los terminos son intercalados empeza ndo con +. Ahora todo el termino factorizado nos
quedaria así: ??????
??????
− ??????=(??????−
??????
)(??????
??????
− ????????????+?????? ??????)
??????
EJEMPLO:
Factorizar: ??????????????????
??????
+ ??????
??????????????????
??????
+ ??????=(????????????+??????)(????????????
??????
−????????????+??????)
√??????????????????
??????
??????
√??????
??????
Buscamos las raíces cubicas de los términos
??????????????????
??????
y ??????, es decir la √??????????????????
??????
??????
=????????????,
iniciemos buscando la raíz cubica de 27 (√????????????
??????
) es encontrar un número que multiplicado
tres veces por sí mismo dé como resultado
???????????? , este número es ??????, también podemos
realizar la descomposición del termino en factores primos, es decir
??????
??????
= (??????)( ??????)( ??????)= ????????????.
Para la raíz de
??????
??????
, �√??????
??????
??????
� se procede igual que en la diferencia de cuadrados, recuerda que el
exponente de la letra se puede dividir con el índice de la raíz, así:
√??????
??????
??????
=??????
????????????⁄
=??????
??????
por la tanto la
raíz de
??????
??????
=??????, porque ????????????⁄=??????, y el exponente uno no se coloca.
Colegio La Salle Envigado
“FORMANDO EN VALORES PARA LA VIDA”
PROFESOR: NELSON RUEDA
~ 13 ~ LIC.EDUCACION BASICA MATEMATICAS (U de
A)
ESTUDIANTE DE MAESTRIA EN “ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES” (UN)
Ahora para encontrar la raíz cubica de ocho �√??????
??????
� procedemos de la misma forma que
para encontrar la raíz cubica de 27, es decir buscamos un número que multiplicado tres
veces por sí mismo dé como resultado 8, tal como lo muestra la descomposición del
número en sus factores primos, tal número es
??????, es decir: ??????
??????
=(??????)(??????)(??????)=??????
Resumamos: ya encontramos las raíces de los términos
√??????????????????
??????
??????
=????????????; √??????
??????
=, la factorización ??????
de una suma de cubos perfectos está compuesta por un término corto, las raíces encontradas
(????????????+) y un término largo que está constituido por un trinomio, el primer término es la primera ??????
raíz al cuadrado (????????????)
??????
=????????????
??????
, el segundo lo forma el producto de las dos raíces (????????????)(??????=????????????, y )
el tercer término la segunda raíz al cuadrado ??????
??????
=??????luego el trinomio queda constituido así: ,
(????????????
??????
−????????????+??????)
Todo el cubo factorizado nos quedaría así: ??????????????????
??????
+??????=(????????????+??????)(????????????
??????
−????????????+??????)
EJERCICIOS DE PRACTICA CUBOS PERFECTOS