High performance liquid chromatography (HPLC)

Preetichaudhary55 4,299 views 85 slides Feb 15, 2021
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

High performance liquid chromatography (HPLC) head points:
HPLC Advantages Vs GC
Instrumentation
HPLC System
Separations
Mobile Phase Reservoirs
Degasser
Aim of Gradient system
High/Low pressure gradient system
HPLC Pump Criteria
HPLC Pumps: Types
Reciprocating Pumps
Sample introduction
Manual Injec...


Slide Content

Presented by Preeti Choudhary
M.Sc. Applied Physics
[email protected]

High Performance Liquid Chromatography
HPLCis characterized by the use of high
pressure to push a mobile phasesolution
through a column of stationary phase
allowing separation of complex mixtures with
high resolution.

From High Pressure Liquid Chromatography to High
Performance Liquid Chromatography
Higher degree of separation!
Refinement of packing material (3 to 10 µm)
Reduction of analysis time!
Delivery of eluent by pump
Demand for special equipment that can
withstand high pressures
The arrival ofhigh performance liquid chromatography!
3

High-Performance Liquid Chromatography
MobilePhase:Liquid
StationaryPhase SeparationMechanism
-Solid Adsorption
-LiquidLayer Partition
-Ionexchangeresin Ionexchange
-Microporousbeads SizeExclusion
-ChemicallymodifiedresinAffinity

HPLC Advantages vs GC
Notlimitedbysamplevolatilityorthermalstability
Twointeractingphases–mobilephaseandstationary
phase
Roomtemperatureanalysis
Easeofsamplerecovery

Instrumentation
Solvent Reservoirs
Pump
Sample Injector
Column
Detector
Data System

Separations
9
Separation in based upon differential
migration between the stationary and
mobile phases.
Stationary Phase -the phase which
remains fixed in the column, e.g. C18,
Silica
Mobile Phase -carries the sample
through the stationary phase as it
moves through the column.
Injector
Detector
Column
Solvents
Mixer
Pumps
High Performance Liquid Chromatograph
Waste

Separations
10
Injector
Detector
Column
Solvents
Mixer
Pumps
Chromatogram
Start Injection
mAU
time
High Performance Liquid Chromatograph

Separations
11
Injector
Detector
Column
Solvents
Mixer
Pumps
Chromatogram
Start Injection
mAU
time

Separations
12
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
13
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
14
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
15
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
16
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
17
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
18
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
19
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
20
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
21
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
22
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
23
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
24
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Separations
25
Injector
Detector
Column
Solvents
Pumps
Mixer
Chromatogram
Start Injection
mAU
time

Mobile Phase Reservoirs
Inertcontainerwithinerttubingsleadingtothe
pumparerequired.
Reservoirfilters(2-10mm)areplacedatreservoir
endofsolventdeliverylines
Reservoirsareelevatedabovepumps.
filter

Degasser
Problems caused by dissolved air in the eluent
Unstable delivery by pump
More noise and large baseline drift in detector cell
Inordertoavoidtheseproblems,theeluentmust
bedegassed.Itisdoneby
-Vacuumfiltration
-Spargingwithinertgas(N
2orHe)
-Ultrasonicundervacuum
27

Isocraticelution:Aseparationthatemploysasingle
solventorsolventmixtureofconstantcomposition.
Gradientelution:Heretwoormoresolventsystems
thatdiffersignificantlyinpolarityareemployed.After
elutionisbegun;theratioofthesolventsisvariedina
programmedway,sometimescontinuouslyand
sometimesinaseriesofsteps.Separationefficiencyis
greatlyenhancedbygradientelution.

Aim of Gradient System
In isocratic mode
29
Long analysis time!!
Poor
separation!!
CH
3OH / H
2O = 6 / 4
CH
3OH / H
2O = 8 / 2
(Column: ODS type)

Aim of Gradient System
If the eluent composition is changed gradually during
analysis...
30
95%
30%
Concentration of methanol in eluent

High-/ Low-Pressure Gradient System
31
High-pressure gradient
Mixer
Low-pressure
gradient unit
Low-pressure gradient
Mixer

Varian 9010 Solvent Delivery System
Rheodyne
Injector
%A %B %C Flow Rate Pressure
{H
2O}{MeOH} (mL/min) (atmos.)
Ready
Ternary Pump
A
C
B
from solvent
reservoir
Column
to
detector
to column
through
pulse
dampener
to injector
through pump
load
inject

HPLC Pump Criteria
Constructedofmaterialsinerttowardsolventstobe
used
Deliverhighvolumes(flowrates)ofsolvent(upto10
mL/min)
Deliverpreciseandaccurateflow(<0.5%variation)
Deliverhighpressure(to6000psi)
Deliverpulsefreeflow
Havelowpump-headvolume
Bereliable

HPLC Pumps: Types
Reciprocating pumps
Syringe pumps
Constant pressure pumps

Reciprocating Pumps
Mostwidelyused
Consistsofasmallcylindricalchamberthatisfilled
andthenemptiedbybackandforthmotionofa
piston
Thepumpingmotionproducesapulsedflowthat
mustbesubsequentlydamped
Advantages:
-theyhavesmallinternalvolume
-highoutputpressure(upto10,000psi)
-readyadaptabilitytogradientelution
-constantflowrates

Schematic Diagram of Reciprocating Pump
38
Motor and cam
Plunger
Plunger seal
Check
valves
Pump head
10 -100µL

Sample Introduction
Valve-typeinjectors
reproducibleinjectionvolumes
variableloopsize
easytouse,reliable

Manual Injector:
Operating Principle of Sample Injection
40
LOAD INJECT
To column
From pump
To column
From pump
Loop
Loop

Front view Back view
Injection

Auto Injectors
Continuousinjectionsoperatorfree
Comparableprecisionandaccuracytomanual
injection
Muchmoreexpensiveinitially
Muchmoreconvenient.Upto100samplesand
standardswithmicroprocessorcontrol

Auto sampler

Liquid-chromatographiccolumnsrangeinlengthfrom
10to30cm.
Theinsidediameterofliquidcolumnsisoften4to10
mm;
Theparticlesizeofpackingare10,5or3m.
Themostcommoncolumncurrentlyinuseisonethatis
25cminlength,4.6mminsidediameter,andpacked
with5mparticles.
Columnsofthistypecontain40,000to60,000
plates/meter.
Analytical Columns

Guard Columns
Aguardcolumnisintroducedbeforetheanalyticalcolumnto
increasethelifeoftheanalyticalcolumnbyremovingnotonly
particulatematterandcontaminantsfromthesolventsbut
alsosamplecomponentsthatbindirreversiblytothe
stationaryphase.
Theguardcolumnservestosaturatethemobilephasewith
thestationaryphasesothatlossesofthissolventfromthe
analyticalcolumnareminimized.
Thecompositionoftheguard-columnpackingissimilarto
thatoftheanalyticalcolumn;theparticlesizeisusuallylarger.
Whentheguardcolumnhasbecomecontaminated,itis
repackedordiscardedandreplacedwithanewone.

Inside the column…..

PARTITION CHROMATOGRAPHY
Partitionchromatographycanbesubdividedinto
(i)liquid-liquidchromatographyand
(ii)bonded-phasechromatography.
Withliquid-liquid,aliquidstationaryphaseisretained
onthesurfaceofthepackingbyphysicaladsorption.
Withbonded-phase,thestationaryphaseisbonded
chemicallytothesupportsurfaces.

PARTITION CHROMATOGRAPHY
Earlypartitionchromatographywastheliquid-liquid
type;nowthebonded-phasemethodhasbecome
predominatebecauseofcertaindisadvantagesofliquid-
liquidsystems.
Oneofthesedisadvantagesisthelossofstationary
phasebydissolutioninthemobilephase,which
requiresperiodicrecoatingofthesupportparticles.
Furthermore,stationary-phasesolubilityproblems
prohibittheuseofliquid-phasepackingsforgradient
elution.

Bonded-PhaseChromatography
Thesupportsforthemajorityofbonded-phasepackingsfor
partitionchromatographyarepreparedfromrigidsilica,or
silica-based,compositions.
Thesesolidsareformedasuniform,porous,mechanically
sturdyparticlescommonlyhavingdiametersof3,5,or10m.
Thesurfaceoffullyhydrolyzedsilicaismadeupof
chemicallyreactivesilanolgroups.Themostusefulbonded-
phasecoatingsaresiloxanesformedbyreactionofthe
hydrolyzedsurfacewithanorganochlorosilane.

Organochlorosilane siloxane

Chromatography Stationary Phases
relatively polarsurface
bulk (SiO
2)
x surface
relatively nonpolarsurface
Silica Gel Derivatized Silica Gel
Where R =
generally
C
18H
37or
C
8H
17
hydrocarbon
chain
“normal phase” “reversed phase”

Bonded Phases
C-2 Ethyl Silyl -Si-CH
2-CH
3
•CN Cyanopropyl Silyl -Si-(CH
2)
3-CN
Polar
•C-18OctadecylSilyl -Si-(CH
2)
17-CH
3
•C-8 Octyl Silyl -Si-(CH
2)
7-CH
3

53
Effect of Chain Length of Stationary
Phase
C
18(ODS)
Strong
C
8
C
4
Medium
Weak

HPLC -Modes
Normal Phase
Polar stationary phase and non-polar solvent.
highly polar stationary phases such as water or triethyleneglycol
supported on silica or alumina particles; a relatively nonpolar
solvent such as hexane or propyletherthen served as the mobile
phase.
Reverse Phase
Non-polar stationary phase and a polar solvent.
the stationary phase is nonpolar, often a hydrocarbon, and the mobile
phase is relatively polar (such as water, methanol, or acetonitrile).

Innormal-phasechromatography,theleastpolar
componentiselutedfirstbecauseitisthemostsoluble
inthemobilephase;increasingthepolarityofthe
mobilephasehastheeffectofdecreasingtheelution
time.
Incontrast,inthereversed-phasemethod,themost
polarcomponentappearsfirst,andincreasingthe
mobilephasepolarityincreasestheelutiontime.

57
Relationship Between Retention
Time and Polarity
C
18(ODS)
CH
3
Strong
Weak
OH

Normal vs. Reversed Phase Chromatography

The Mobile Phase
Normal chromatography
Hexane ; dichloromethane; isopropanol; methanol
Increasing strength
Reverse phase chromatography
water ; methanol; acetonitrile; tetrahydrofuran (THF)
Increasing strength

61
Hydrophobic Interaction
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
Network of hydrogen bonds
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
Nonpolar solute
If a nonpolar
substance is added...
…the network is broken and...
H
2O
H
2O H
2O
H
2O
H
2O H
2O
H
2O
Nonpolar solute
Nonpolar stationary phase
…the nonpolar substance
is pushed to a nonpolar
location.

62
Difference in Solute Retention Strengths for Water
and Water-Soluble Organic Solvents
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
H
2O
Tightly packed network
CH
3OH
Nonpolar solute
Nonpolar solute
Nonpolar stationary phase
Loose network
CH
3OH
CH
3OH
CH
3OH
CH
3OH
CH
3OH
CH
3OH

Common Reverse Phase Solvents
Methanol CH
3OH
• Acetonitrile CH
3CN
• Tetrahydrofuran
• Water
H
2O

HPLC CHROMATOGRAM -choosing the ‘right’
mobile phase (having ‘right’ polarity)

Detectors
Unlikegaschromatography,liquidchromatographyhasno
detectorsthatareasuniversallyapplicableandasreliableas
theflameionizationandthermalconductivitydetectors.A
majorchallengeinthedevelopmentofliquid
chromatographyhasbeenindetectorimprovement.
TypesofDetectors:
Bulkpropertydetectorsrespondtoamobile-phasebulk
property,suchasrefractiveindex,dielectricconstant,or
density.
Solutepropertydetectorsrespondtosomepropertyof
solutes,suchasUVabsorbance,fluorescence,ordiffusion
current,thatisnotpossessedbythemobilephase.

HPLC Detector Characteristics
Detector performance characteristics:
Sensitivity (LoD, LoQ)
Selectivity
Linearity
Qualitative information
Reliability
Ease of use
Universality
66

LOD
The limit of detection for a detector can be characterized
by its signal to noise ratio (S/N) for an analyte under a
given set of conditions.
67
Noise
Peak

68
Representative HPLC Detectors
UV-VIS absorbance detector
Photodiode array-type UV-VIS absorbance
detector
Fluorescence detector
Refractive index detector
Evaporative light scattering detector
Electrical conductivity detector
Electrochemical detector
Mass spectrometer

Absorbance Detectors
TheseareZ-shaped,flow-throughcellforabsorbance
measurementsoneluentsfromachromatographic
column.Manyabsorbancedetectorsaredouble-beam
devicesinwhichonebeampassesthroughtheeluentcell
andtheotherisreferencebeam.

UltravioletAbsorbanceDetectorswithFilters
ThesimplestUVabsorptiondetectorsarefilter
photometerswithamercurylampasthesource.Most
commonlytheintenselineat254nmisisolatedbyfilters.
Deuteriumortungstenfilamentsourceswith
interferencefiltersalsoprovideasimplemeansof
detectingabsorbingspecies
UVAbsorbanceDetectorwithMonochromator
Therearedetectorsthatconsistofascanning
spectrophotometerwithgratingoptics.Somearelimited
touvradiation;othersencompassbothuvandvisible
radiation.Themostpowerfuluvspectrophotometric
detectorsarediode-arrayinstruments.

71
Data Obtained with a Photodiode
Array Detector
Retention
time
Absorbance
Chromatogram
Spectrum

Online Spectra -UV-Vis Detector
72
Wavelength
Time
Absorbance
Spectra

FluorescenceDetectors
Fluorescenceisobservedbyaphotoelectricdetector
locatedat90degtotheexcitationbeam.
Thesimplestdetectorsemployamercuryexcitation
sourceandoneormorefilterstoisolateabandof
emittedradiation.
MoresophisticatedinstrumentsarebaseduponaXenon
sourceandemployagratingmonochromatortoisolate
thefluorescentradiation.
Aninherentadvantageoffluorescencemethodsistheir
highsensitivity,whichistypicallygreaterthanmost
absorbanceprocedures.

74
Optical System of Fluorescence Detector
Xenon lamp
Excitation
grating
Excitation
light
Fluorescence
Fluorescence
grating
Sample cell
Photomultiplier
tube

Refractive-IndexDetectors
Refractive-indexdetectorshavethesignificant
advantageofrespondingtonearlyallsolutes.Thatis
theyaregeneraldetectorsanalogoustoflameor
thermalconductivitydetectorsingaschromatography.
Theyarereliableandunaffectedbyflowrate.
Theyare,however,highlytemperaturesensitiveand
mustbemaintainedataconstanttemperaturetoafew
thousandthsofadegreecentigrade.
Theyarenotassensitiveasmostothertypesof
detectorsandgradientelutionisnotpossible.

76
Differential Refractive Index
Detector (Deflection-Type)
Light
Sample
cell
Reference
cell
Light-receiving
unit

ElectrochemicalDetectors:Thesedevicesare
baseduponamperometry,polarography,coulometry,
andconductometry.Theyappeartoofferadvantages,
inmanyinstances,ofhighsensitivity,simplicity,
convenience,andwidespreadapplicability.

78
Electrochemical Detector
RHO
HO
RO
O
+ 2H
+
2e
-
Electrode

79
Cell Structure of Electrochemical
Detector (Amperometric Type)
Working electrode
(glassy carbon)
Electrode couple
Reference electrode
(Ag/AgCl)
Eluent

HPLC Applications
80
Chemical
Environmental
Pharmaceuticals
Consumer Products
Clinical
polystyrenes
dyes
phthalates
tetracyclines
corticosteroids
antidepressants
barbiturates
amino acids
vitamins
homocysteine
Bioscience
proteins
peptides
nucleotides
lipids
antioxidants
sugars
polyaromatic hydrocarbons
Inorganic ions
herbicides

Application of HPLC
1. Pharmaceuticals industry
To control the drug stability
Quantity of drug determination from pharmaceutical dosage
forms, ex. Paracetamol determination in panadol tablet
Quantity of drug determination from biological fluids, ex:
blood glucose level
2. Analysis of natural contamination
-Phenol & Mercury from sea water
3. Forensic test
-Determination of steroid in blood, urine & sweat.
-Detection of psychotropic drug in plasma

Application of HPLC
4. Clinical test
-Monitoring of hepatic chirosis patient through
aquaporin 2 in the urine.
5. Food and essence manufacture
-sweetener analysis in the fruit juice
-preservative analysis in sausage.