Sample Code Source Code: Step 1 : load the libraries using the import libraries from flask import Flask,render_template , redirect, request import numpy as np import PIL from keras.models import load_model import cv2 Step 2 : Load and transform data. gro = load_model ( r'model files/Food_model.h5’) Food = load_model ( r'model files/Indian_food_20.h5’) fre = load_model ( r'model files/Food_freshness.h5') Step 3 : Plot and inspect the classes in the data classes = ['apple', 'banana', 'beetroot', 'bell pepper', 'cabbage', 'capsicum', 'carrot', 'cauliflower', 'chilli pepper', 'corn', 'cucumber', 'eggplant', 'garlic', 'ginger', 'grapes', ' jalepeno ', 'kiwi', 'lemon', 'lettuce', 'mango', 'onion', 'orange', 'paprika', 'pear', 'peas', 'pineapple', 'pomegranate', 'potato', ' raddish ', 'soy beans', 'spinach', ' sweetcorn ', ' sweetpotato ', 'tomato', 'turnip', 'watermelon’] menue = [ 'burger', ' butter_naan ', 'chai', 'chapati', ' chole_bhature ', ' dal_makhani ', 'dhokla', ' fried_rice ', ' idli ', ' jalebi ', ' kaathi_rolls ', ' kadai_paneer ', 'kulfi', ' masala_dosa ', ' momos ', ' paani_puri ', ' pakode ', ' pav_bhaji ', 'pizza', 'samosa ’] fresh = [' rotten','fresh ']