Integral Calculus Formula Sheet
Derivative Rules:
0
d
c
dx
1nnd
xnx
dx
sin cos
d
x x
dx
sec sec tan
d
x xx
dx
2
tan sec
d
x x
dx
cos sin
d
x x
dx
csc csc cot
d
x xx
dx
2
cot csc
d
x x
dx
ln
xxd
aaa
dx
x xd
ee
dx
dd
cf x c f x
dx dx
ddd
fx gx fx gx
dx dx dx
fg f gfg
2
fg fgf
gg
d
fgx f gx gx
dx
Properties of Integrals:
() ()kf u du k f u du
() () () ()fu gu du f udu gudu
() 0
a
a
fxdx
() ()
ba
ab
fxdx f xdx
() () ()
cbc
aab
fxdx f xdx f xdx
1
()
b
ave
a
f fxdx
ba
0
() 2 ()
aa
a
fxdx f xdx
if f(x) is even () 0
a
a
fxdx
if f(x) is odd
()
()
( ()) () ()
fbb
afa
gfx f xdx gudu
udv uv vdu
Integration Rules:
du u C
1
1
n
n
u
udu C
n
ln
du
uC
u
uu
edu e C
1
ln
uu
adu a C
a
sin cosudu u C
cos sinudu u C
2
sec tanudu u C
2
csc cotuuC
csc cot cscuudu uC
sec tan secuudu uC
22
1
arctan
du u
C
au a a
22
arcsin
du u
C
aau
22
1
sec
udu
arc C
aauu a
Fundamental Theorem of Calculus:
'
x
ad
Fxftdtfx
dx where
ft is a continuous function on [a, x].
b
a
fxdx Fb Fa , where F(x) is any antiderivative of f(x).
Riemann Sums:
11
nn
ii
ii
ca c a
111
nnn
ii i i
iii
ab a b
1
() lim ( )
b n
n
ia
fxdx f a i x x
n
ab
x
1
1
n
i
n
1
(1)
2
n
i
nn
i
2
1(1)(21)
6
n
i
nn n
i
2
3
1
(1)
2
n
i
nn
i
height of th rectangle width of th rectangle
i
ii
Right Endpoint Rule:
n
i
n
ab
n
ab
n
i
iafxxiaf
1
)()(
1
)()()()(
Left Endpoint Rule:
() ()
11
((1))() ( )((1) )
nn
ba ba
nn
ii
fa i x x fa i
Midpoint Rule:
(1) ( ) (1) ( )
22
11
()()()( )
nn
ii ba iiba
nn
ii
fa x x fa
Net Change:
Displacement: ()
b
a
vxdx
Distance Traveled:
()
b
a
vx dx
0
() (0) ( )
t
st s vxdx
0
() (0) ( )
t
Qt Q Q xdx
Trig Formulas:
2 1
2
sin ( ) 1 cos(2 )
x x
sin
tan
cos
x
x
x
1
sec
cos
x
x
cos( ) cos( )x x
22
sin ( ) cos ( ) 1xx
2 1
2
cos ( ) 1 cos(2 )
x x
cos
cot
sin
x
x
x
1
csc
sin
x
x
sin( ) sin( )x x
22
tan ( ) 1 sec ( )x x
Geometry Fomulas:
Area of a Square:
2
As
Area of a Triangle:
1
2
Abh
Area of an
Equilateral Trangle:
23
4
A s
Area of a Circle:
2
Ar
Area of a
Rectangle:
Abh
Areas and Volumes:
Area in terms of x (vertical rectangles):
()
b
a
top bottom dx
Area in terms of y (horizontal rectangles): ()
d
c
right left dy
General Volumes by Slicing:
Given: Base and shape of Cross‐sections
()
b
a
VAxdx
if slices are vertical
()
d
c
VAydy
if slices are horizontal
Disk Method:
For volumes of revolution laying on the axis with
slices perpendicular to the axis
2
()
b
a
VRxdx
if slices are vertical
2
()
d
c
VRydy
if slices are horizontal
Washer Method:
For volumes of revolution not laying on the axis with
slices perpendicular to the axis
22
() ()
b
a
VRx rxdx
if slices are vertical
22
() ()
d
c
VRy rydy
if slices are horizontal
Shell Method:
For volumes of revolution with slices parallel to the
axis
2
b
a
Vrhdx
if slices are vertical
2
d
c
Vrhdy
if slices are horizontal
Physical Applications:
Physics Formulas Associated Calculus Problems
Mass:
Mass = Density * Volume (for 3‐D objects)
Mass = Density * Area (for 2‐D objects)
Mass = Density * Length (for 1‐D objects)
Mass of a one‐dimensional object with variable linear
density:
()()
bb
distanceaa
Mass linear density dx x dx
Work:
Work = Force * Distance
Work = Mass * Gravity * Distance
Work = Volume * Density * Gravity * Distance
Work to stretch or compress a spring (force varies):
'
() ()
bbb
Hooke s Lawaaa
for springs
Work force dx F x dx kx dx
Work to lift liquid:
()()( )( )
9.8* * ( )*( ) ( )
d
c
volume
d
c
Work gravity density distance areaof a slice dy
WAyaydyinmetric
Force/Pressure:
Force = Pressure * Area
Pressure = Density * Gravity * Depth
Force of water pressure on a vertical surface:
()()()()
9.8* *( )* ( ) ( )
d
c
area
d
c
Force gravity density depth width dy
Faywydyinmetric
Integration by Parts:
Knowing which function to call u and which to call dv takes some practice. Here is a general guide:
u Inverse Trig Function (
1
sin ,arccos ,xx
etc)
Logarithmic Functions (
log3 ,ln( 1),xx
etc)
Algebraic Functions (
3
,5,1/,xx x etc )
Trig Functions (
sin(5 ),tan( ),xx etc )
dv Exponential Functions (
33
,5 ,
xx
e etc )
Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.
Trig Integrals:
Integrals involving sin(x) and cos(x): Integrals involving sec(x) and tan(x):
1. If the power of the sine is odd and positive:
Goal: cosux
i. Save a
sin( )du x dx
ii. Convert the remaining factors to
cos( )
x(using
22
sin 1 cosx x.)
1. If the power of
sec( )
xis even and positive:
Goal:
tanux
i. Save a
2
sec ( )du x dx
ii. Convert the remaining factors to
tan( )
x (using
22
sec 1 tanx x.)
2. If the power of the cosine is odd and positive:
Goal:
sinux
i. Save a
cos( )du x dx
ii. Convert the remaining factors to
sin( )
x(using
22
cos 1 sinx x.)
2. If the power of
tan( )
xis odd and positive:
Goal:
sec( )ux
i. Save a
sec( ) tan( )du x x dx
ii. Convert the remaining factors to
sec( )
x (using
22
sec 1 tanx x.)
3. If both sin( )x and cos( )xhave even powers:
Use the half angle identities:
i.
2
1
2
sin ( ) 1 cos(2 )
x x
ii.
2
1
2
cos ( ) 1 cos(2 )
x x
If there are no sec(x) factors and the power of
tan(x) is even and positive, use
22
sec 1 tan
x x
to convert one
2
tanxto
2
secx
Rules for sec(x) and tan(x) also work for csc(x) and
cot(x) with appropriate negative signsIf nothing else works, convert everything to sines and cosines.