#BharatSir : Download Integrals/Integrations Maths formula from www.bharatsir.com.Join Buddha Science and Technical Institute at Kokar, Ranchi for Strong foundation IIT-JEE / Medical.
Your query : integral formula list , integral formulas of trigonometric functions, integral formulas pdf download...
#BharatSir : Download Integrals/Integrations Maths formula from www.bharatsir.com.Join Buddha Science and Technical Institute at Kokar, Ranchi for Strong foundation IIT-JEE / Medical.
Your query : integral formula list , integral formulas of trigonometric functions, integral formulas pdf download, integrals formula class 12, integrals all formula pdf, integrals and formula, formula area integrals, basic integral formula, formula for integrals, integrals all formulas, integrals important formula, integral ka formula, integrals ln formula, integration formula questions, integration formula quotient, integration formulas quiz, formulas of integration pdf, integration basic formulas list, integration all formula
#BSTI #IIT #JAC #MATH #CBSE #12thClass #NEET #kokar #11thClass #Medical #integration
Size: 4.17 MB
Language: en
Added: Feb 28, 2022
Slides: 8 pages
Slide Content
MATHS
FORMULA
INTEGRALS
By
Assistant Professor (Computer Science)
Director, BST, Kokar
&
Assistant Professor (Computer Science)
‘Asst. Director, BSTI, Kokar
IIT-JEE / ENGINEERING
Buddha Science & Technical Institute
K R: 34001. arkhand, India
Jharkhand
ERING At Kokar, Ranchi - 834001,
ons
co)
Integration + The inverse process of differentiation is called integration. In
Integral Calculus here are 1x0 types of integral, indefinite integrals and definite
integrals
. INDEFINITE INTEGRALS + The infinite integrals of f(x) is
Jreade= Perec, where LI and € is called constant of
integro. Since Cs pss ay fro des ners are cal indefinite
integras. SI =
(0%) face = tonte x tn + €
XD Joosecuds = logteosecx-cot29+ €
D face tan see + €
1) foosccveot ue = cosect C
Buddha Science & Technical Institute, Kokar, Ranchi
www.bharatsir.com | Mobile : 09835376044 | Whatsapp : 09006365889
At Kokar, Ranchi - 834001, J
ING
VD [tn tes 0
ov [tasa
avi
D face ade mtn
9 foosecéadr= cote €
5. NOTE à The foma free Zr mei ony vail rabais
Polynom, provide Bae of i exp mb nea
eh
See je
6. Methods or Integration; { Z
‘To fad the integrals, the following eo are use
(0) ‚Integration by decomposition 4
D! Tnegrtion by substitution, including standen integral.
(OU) Integration by partial tions. 2
(av) mtegraton by paris
7. Integration by décomposition :
In his method, he integrand decomposed Se some examples
Mi Jor sige! +sin xx es
A, Pin 2-2)
ay RE tr anise Jaa) cae
Ve
OS
= oe x + cosee nat = fac’ ude foosectude et.
Buddha Science & Technical Institute, Kokar, Ranchi
www.bharatsir.com | Mobile : 09835376044 | Whatsapp : 09006365889
8. Integration by Substitution including standard integrals:
‘The method in which we change the variable (0 some other variable is called the
method of substitution
When he megan isa the pe Fa) X 1 or LED we pa FC) =1 and
J'ods=dr.
For example 1 je
- RAN
Se
Standard, Integrals: The integrls of he Up _ as
Re EE, | 2
JC Na Fete dx are sand imegral
“ts
arte
At Kokar, Ranchi - 834001, J
ING
(a) To find be integras | NE Mr OS
{aX r+ persquare and uso the following formulae:
A Sim)
er K
Role ¢
letal
rh
sn (re
= a+
ace a+
Buddha Science & T
www.bharatsir.com | Mobile
chnical Institute, Kokar, Ranchi
9835376044 | Whatsapp : 09006365889
At Kokar, Ranchi - 834001, Jharkhand
ING
m Fa NE
DRAN er +c
cm dera
Care
For example:
DEN ee >
(0 To find ints -
a Ha ne armen os
(re
ax
Now by equating the cosicirs of ike terms bot ides nd À And B. Using
rtd of subtiuion and formula of sand
the given integrals.
Express prog
gral 1 1X. we can find
For example:
Buddha Science & Technical Institute, Kokar, Ranchi
9835376044 | Whatsapp : 09006365889
www.bharatsir.com | Mobile
nula
Or we can use direct method
Jharkhand
Now
ind. ¿CSS method -of substn
section @ =
= pnt à
2 Integration by Partial ration The integral othetynes [+
«dx À 22
FRE tocan be ovale by ring meto pti
aros (es SUPONE
> Traction: If the (degree of num.) (degree of den.), then use long division and
lex the ie ron pe AIO Te prpe ion ca. peca
sm réal Icons af pes =
ERING At Kokar, Ranchi - 834001,
a HE Y
where 4° +bx +Ccánnot be factorized further. À Yr
10, Integration y Part; The oles of he ype | ECON: core found sing
integaon by pata flows
Jr x eo Feo] fate -f[fecode]x rede
Coos and anton coring oe LATE.
NOTE + For the integral fe*[£G0+ dr, split it ito two integral as
Je cou fete and then apply integration by pars in fs integral ony
Buddha Science & Technical Institute, Kokar, Ranchi
www. bharatsir.com | Mobile : 09835376044 | Whatsapp : 09006365889
At Kokar, Ranchi - 834001, J
ING
11. Definite Integrals We deot he definite integral by | Cu. Geometrical,
J rise ea bunte byte curves y= 60, = bande X-axis
‘There is no need of constant of integration since the definite integral has a unique
value, By fundamental theorem of calculus
Írcom= [Eo FO) Fa where [FCO 100
12. Properties of définit integral The properties of definite integral are very useful
in evalusfing the definite integral moro easily. There are dome properties of
¿ori integral given below: N
6 rom you N
From ya GO
OS = frau HS
mb [riot caos E
Ps: [row [ron o “as
i Py, es ran gags
SN E 0, if f@a-x)= f(x) Ls
e Je ee if f(s evn
0. God
TS pode nnere aces
Buddha Science & Technical Institute, Kokar, Ranchi
www. bharatsir.com | Mobile : 09835376044 | Whatsapp : 09006365889
13. Definite Integral as the limit ofa sum =
La ref foxde. ln this mebod the area bounded by the cures
E
ls Y= (0, X=4x=b and the X axis i divided into small stripes of equal width
5 h Let the interval [a, 6] is divided imo n equals sub intervals, then
El _( ls
E y N
A a à
2 2. te Fany mistake on his, kindy inform on the mall
Z nal 2074 "BD
El
Buddha Science & Technical Institute, Kokar, Ranchi
www. bharatsir.com | Mobile : 09835376044 | Whatsapp : 09006365889