Integrated Design Project (Geotech)_1.pdf

SanDar27 48 views 87 slides May 08, 2024
Slide 1
Slide 1 of 87
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87

About This Presentation

It is the presentation of our group for integrated design project in Civil Engineering Department in West Yangon Technological University, Myanmar.


Slide Content

SOIL INVESTIGATION
FOR
RECTOR HOUSE PROJECT
Presented by;
Geotechnical Engineering
Students (VI-BE Civil)
Supervised by:
DawSandarLin
Associate Professor
MINISTRY OF SCIENCE AND TECHNOLOGY
WEST YANGON TECHNOLOGICAL UNIVERSITY
DEPARTMENT OF CIVIL ENGINEERING
1/18/2024

2
List of Group Members
No RollNo: List of Member Sign
1 VI-C14 Ma Su MyatNoeAung
2 VI-C 26 Mg Ye HtutAung
3 VI-C 33 Mg ZawLwinHtooThant
4 VI-C38 Mg Lu Min Khant
5 VI-C 46 Ma PwintOoThu
6 VI-C 52 Mg Si Thu Win Htike
7 VI-C 53 Ma HtetHtetKhine
8 VI-C60 Mg Han KoOo
9 VI-C64 MgAung KyawHtet
10 VI-C 74 Mg TunMin Oo
11 VI-C 75 MgAung MyoKyaw
12 VI-C 76 Ma HninPwintWai

Outlines of Presentation
➢Introduction
➢Motivation and Objectives of
the Study
➢Study Area
➢Scope of the Study
➢Methodology
➢Field Study
➢Laboratory Study
➢Ground Water Table
➢Discussion & Conclusions
➢Recommendations
➢References
3

4
Introduction (1/4)
➢Naturalsoildepositsarenothomogeneous,elastic,orisotropic.
➢Insomeplaces,stratificationofsoilchangegreatlywithindistanceof≈50to100
ft.
➢Forfoundationdesignandconstructionwork,
-actualsoilstratificationatagivensite,
-laboratorytestresultsofsoilsamplesfromvariousdepthsmustbeknown.
➢Formostmajorstructures,adequatesoilinvestigationatconstructionsitemust
beconducted.
(DasB.MandSobhanK.,(2012))

5
Introduction (2/4)
➢Geotechnicalinvestigationisrequiredtosubmittothebuildingofficial.
➢Especiallyfortheseconditions–
-Questionablesoil
-Expansivesoils
-Ground-watertableaboveorwithin5ftbelowlowestfloorlevel
-Pileandpierfoundations
-Rockstrata(boringistoadepthofnot<10ftbelowfoundations)
-SeismicDesignCategory
➢Geotechnicalinvestigationneednotrequirewheresatisfactorydatafromadjacent
areasisavailable.
(MNBC(2020),Part4–SoilandFoundation)

6
Introduction (3/4)
➢Soilclassificationshallbebasedon
-observationand
-anynecessarytestsofthematerialsrevealedbyborings,testpitsor
-othersubsurfaceexplorationmadeinappropriatelocations
(MNBC(2020),Part4–SoilandFoundation)
➢Numberandlocationofborings-???
➢Depthofboring-???

7
Introduction (4/4)
➢Numberandlocationofborings
1.Minimumof2boringsforeveryproject.
2.Oneboringforevery2500sq-ftforbuilt-overarea≤10,000sq-ft.
3.Oneadditionalboringforeveryextra5,000sq-ftforlargeareaprojects
>10,000sq-ft.
4.Additionalboringsforirregularsoilconditions.
➢Depthofboring
1.Forshallowfoundations,minimumdepthofboring-largervalueof1.5times
lesserdimensionoftheshallowfoundationor30ft.
2.Fordeepfoundations,minimumdepthofboring-:
-20S
0.7
(ft.)or6S
0.7
(m)whereS=numberofstoreysincludingbasements.
1.Foranytypeoffoundationinseismicdesignpurposes,minimumdepthof
boring-100ft.
(MNBC(2020),Part4–SoilandFoundation)

8
Motivation and Objectives of the Study
➢Motivation
-Asdiscussedabove,soilinvestigationplaysavitalrolethatwillenabletoplan
earthworkandfoundationworkproperlyandprecisely.
-AsGeotechnicalEngineeringSubjectgroup,soilinvestigationisconductedfor
theproposedbuildingsite(i.e,RectorHouse)inWYTUfortheIntegratedDesign
Project(IDP).
➢Objectives
-AimtomakesoilinvestigationfortheproposedRectorHouseconstruction
projectinordertogivetheproperandprecisesoilinformationforfoundationdesign.
-Toachievethismainobjective,thefollowingsub-objectivesareadopted.
✓Makingfieldstudytoselecttestpitsandsoilsampling.
✓Makinglaboratorystudytopresentbasicsoilproperties.

9
➢RectorHouse–two-storeyedRCCresidentialbuilding(54ftx54ft)
➢DistancefromRectorHouseareatotestpit(1)=20
➢DistancefromRectorHouseareatotestpit(2)=30
Figure 1. Location of Rector House at WYTU Campus
Study Area

10
Figure 2. Photograph of the Proposed Site

11
Scope of the Study
➢Soilsamplingfromtestpits,notboreholes
➢DepthofTestpit(1)=from0to1.5ftfromnaturalgroundlevel
➢DepthofTestpit(2)=from1.5ftto3ftfromnaturalgroundlevel
➢Laboratorytests-Moisturecontenttest,Specificgravitytest,Particlesize
distributiontest,Atterberglimit,StandardProctortest,andDirectsheartest
accordingtoAmericanSocietyforTestingandMaterials(ASTM)
➢Testpits–20~30ftfromtheborderoftheproposedRectorHousebecauseof
pondingwateronthegroundsurface,butwithin50ft

12
Methodology
Soil report
3.
Laboratory
study
2. Field
study
1. Literature
study
Literature study
1.Discussion
Field study
1.Site selection
2.Test pit
3.Sampling
Laboratory study
1.Moisture content test
2.Particle size distribution test
3.Specific gravity test
4.Atterberg limit test
5.Standard Proctor test
6.Direct shear test

13
Literature Study
➢Readingassignedliterature,anddiscussingaboutit.
Figure 3. Discussion about Literature

14
Field Study (1/2)
➢Selectingthesite
➢DiggingtwoTestpits
➢Soilsampling
Figure 4. Digging Test Pits

15
Field Study (2/2)
Figure 5. Soil Sampling and Air Drying Soil

16
Laboratory Study –Field moisture content (ASTM D-2216)
➢Toinvestigatethefieldwatercontentormoisturecontentofthesoilsample.
➢Procedures–
1.Measurethemassofthecleananddrycontainer.
2.Placethemoistsoilspecimeninthecontainer.
3.Measurethemassofthecontainerwithmoistspecimen.
4.Putthesoilcontainerintheovenat1105°Cfor24hr.
5.Afterthis,measurethemassoftheoven-drysoil.
6.Calculateitswatercontent.
Moisture Content (%) w=
ma−m
b
m
b
−mc
×100%=
mw
ms
×100%
Figure 6. Six samples
before putting in oven

17
Laboratory Results of Moisture Content Test
Sample -1 (1.5ft) Can-1 Can-2 Can-3 Can-4
massofmoistsoilandcontainer(Ma) 0.104 0.110 0.105 0.045
massofdriedsoilandcontainer(M
b
) 0.082 0.088 0.084 0.036
massofcontainer(Mc) 0.011 0.011 0.011 0.011
MOISTURE CONTENT 30.99% 28.57% 28.38% 27.01%
➢Mean moisture content (0 –1.5 ) = 28.74 %
Sample-2 (3ft) Can-1 Can-2 Can-3 Can-4
massofmoistsoilandcontainer(Ma) 0.100 0.087 0.088 0.052
massofdriedsoilandcontainer(M
b
) 0.08 0.070 0.071 0.042
massofcontainer(Mc) 0.010 0.010 0.011 0.011
MOISTURE CONTENT 26.76% 27.87% 28.33% 27.12%
➢Mean moisture content (1.5 –3 ) = 27.52 %

18
Laboratory Study –Specific Gravity Test (ASTM D-854)
➢Toinvestigatethespecificgravity(G
s)ofthesoilsample.
➢Specificgravityisafundamentalpropertyofsoilsandotherconstructionmaterials.
➢Thespecificgravityofsoilsolidsisusedtocalculatethedensityofsoilsolids.
➢CalibrationofPycnometer
-Clean and dry the Pycnometer
-Measure mass of the pycnometer
-Filled it with distilled water
-Measure mass of (pycnometer + water ).
-Get temperature of the Distilled water.
-Determine the volume of the pycnometer (V
p)

19
Procedure for Specific Gravity Test
1.Empty and dry the pycnometer to put inside the soil sample.
2.Place distilled water into the pycnometer until its 1/3 or 2/3 water level.
3.Using the thermometer, measure the temperature of the distilled water.
4.Measure and record the mass of the pycnometer+ water.
5.Remove all the wet soil and placed in a pan.
6.Maintain the specimen with containers in an oven-dry at 110 ±5C.
7.After 24 hr, measure the mass of dry sample.

20
Figure7.VolumetricFlaskandContainer
forSpecificGravityTest
Figure 8. Maintain Soil Specimen
in drying oven at 114C

21
Figure 9. Using Thermometer for
Distilled Water
Figure10.WeighingDrySample

22
Calculation for Specific Gravity
V
p=
(Mpwc–M
p)

wc
V
p= the calibrated volume of pycnomter
M
pw,c= the mass of pycnometerand water at the calibrated temperature (g)
M
p= Mass of empty pycnometer

wc= Density of water at the calibrated temperature g/mL from ASTM D854-02 Table 2
M
pw,t=M
p+V
p
w,t
M
pw,t= the mass of pycnometerand water at the test temperature (g)
M
p= Mass of empty pycnometer

wt= Density of water at the test temperature g/mL from ASTM D854-02 Table 2

23
Calculate the specific gravity of soil solids at the test temperature ;
G
t=
Ms
Ms+Mρwt−Mρws,t
M
s= the mass of pycnometerand dry oven soil (kg)
M
wt= mass of pycnometerand water at the test temperature (kg)
M
ws,t= mass of pycnometerand water and soil at the test temperature (kg)
G
20C= K G
t
G
20C= the specific gravity of soil solids at the 20C.
K = temperature coefficient given in ASTM D854 Table-2.
➢The specific gravity of soils is in the range 2.60 to about 2.80.
➢The specific gravity of soil samples used in geotechnical studies has been found
to range from 1.96 to 2.54, with most values between 2.48 and 2.50.

24
Number of Pycnometer 1 2
Temperature ofwater at calibrated Temp:(C) 23.2C 23.2C
Temperature ofwater at TestTemp:(C) 23C 22.8C
Mass of Empty Pycnometer (kg) 0.05 0.043
Density of waterat calibrated Temp: (ASTM D-854) 0.99749 0.99749
Density of water at TestTemp: (ASTM D-854) 0.99754 0.99759
CalibratedVolume of Pycnometer 0.10025 0.10024
Calibration of Pycnometer for Specific Gravity Test

25
Numberof Pycnometer 1 2
Mass of Dry Soil passing No.4 Sieve(kg) 0.08 0.071
Mass of Pycnometer+ Dry Soil (kg) 0.13 0.114
Mass of Pycnometer+ Dry Soil + Water (kg) 0.23 0.221
Mass of Pycnometer+ Water at Test Temp: (kg)0.149998 0.14999
Specific Gravity 2.6 2.651
Temperature coefficient 1.00000 1.00000
Specific Gravity of soil at 20C 2.6 2.651
➢According to ASTM D-854, should calibrate up to six pycnometerto get specific
gravity at test temperature.
Laboratory Results of Specific Gravity

➢Dependingonmoisturecontent,behaviorofsoilcanbedividedintofourbasic
states—solid,semisolid,plastic,andliquid.
➢Themoisturecontentatthepointoftransitionfromsolidtosemisolidstateisthe
shrinkagelimit(SL).
➢Themoisturecontentatthepointoftransitionfromsemisolidtoplasticstateisthe
plasticlimit(PL).
➢Themoisturecontentatthepointoftransitionfromplastictoliquidstateisthe
liquidlimit(LL).
➢TheseparametersarealsoknownasAtterberglimits.
➢ToinvestigatetheAtterberglimits(i.e.,LLandPL)forthesoilsample.
26
AtterbergLimitTest(ASTMD-4318)

27
Figure 11. Atterberg Limit Diagram (Stress-Strain)

28
➢Placeasoilpasteinthecup.
➢Cutagrooveatthecenterofthesoilpastewiththestandardgroovingtool.
➢Liftthecupanddropitfromaheightof10mm,usingthecrank-operatedcam.Measurethe
watercontentrequiredtocloseadistanceof12.7mmalongthebottomofthegrooveand
notedownthenumberofblows.
➢Repeattheprocedureatleastthreetimesforthesamesoilatvaryingmoisturecontents.
➢Plotthemoisturecontentofthesoil,inpercent,andthecorrespondingnumberofblowson
semi-logarithmicgraph.Drawthebest-fitstraightlinethroughtheplottedpoints.
➢ThemoisturecontentcorrespondingtoN25,determinedfromthecurve,istheliquidlimit
ofthesoil.
Procedure For Liquid Limit Test

29
Figure 12. Atterberg Limit Equipments

Preparation for Liquid Limit Test
➢Plot the relationship between the water content, Wnand the corresponding number of
drops N of the cup on a semilogarithmic graph
➢Water content , Y-axis on arithmetical scale
➢No of drops , X-axis on a logarithmic scale
➢Draw the best straight line through the three or more plotted points
➢Take the water content corresponding to the intersection of line with the 25-drops as
liquid limit of the soil
➢Round to the nearest whole number
30Figure 13. Relation of Water Content & Number of Blow, N

31
66.7
63.5
59.5
y = -0.5203x + 78.495
R² = 0.9223
59
60
61
62
63
64
65
66
67
68
1 10 100
Moisture content (%)
No. of blows
FLOW CURVE FOR LIQUID LIMIT
Moisture Content
Linear (Moisture Content)

32
Laboratory Results of Atterberg Limit ( Liquid Limit )
Trial no. 1 2 3
No. of blows 22 31 35
Wt. of container in kg. 0.011 0.011 0.010
Wt. of container +
wet soil, kg.
0.0283 0.0317 0.0266
Wt. of container +
dry soil, kg.
0.0215 0.0237 0.0194
Wt. of water, in kg. 0.0068 0.008 0.0072
Wt. of dry soil, in kg.0.0105 0.0127 0.0094
Water content, w in % 66.7 63.5 59.5

➢Soilsampleisrolledouttoadiameterof3mm(1/8”).
➢Ifthethreadcrumblesatdiametersmallerthan3mm,thesoilistoowet.
➢Ifthethreadcrumblesatadiametergreaterthan3mm,thesoilisdrierthanthe
plasticlimit.
➢Thesamplecanthenberemoldedandthetestrepeated.
➢Oncetheappropriatesizerollsaremade,theirmoisturecontentisassessedusing
theproceduredescribedpreviously.
33
Figure 14. Plastics Limit
Procedure For Plastics Limit Test

Calculation For Plastics Limit Test (ASTM D-4318)
➢Computetheaverageoftwowatercontainersandroundtothenearest
wholenumber
➢Thisvalueistheplasticlimit,PL
PlasticityIndex
➢PlasticityIndex(PIorI
P)iscalculatedasthePlasticLimitsubtractedfrom
theLiquidLimitandisanimportantvaluewhenclassifyingsoiltypes.
PI=LL-PL
34
Where; PI = Plasticity Index
LL = Liquid Limit
PL = Plastic Limit

35
Laboratory Results of Atterberg Limit ( Plastics Limit )
Trialno. 1 2 3
Wt. of container in kg 0.011 0.011 0.011
Wt. of container + wet soil in kg0.0232 0.0202 0.0199
Wt. of container + dry soil in kg0.0209 0.0184 0.0179
Wt. of water in kg 0.0023 0.0018 0.002
Wt. of dry soil in kg 0.0132 0.011 0.011
Water content, w in % 17.42 16.22 18.18

36
Laboratory Study –Particle Size Distribution Test (ASTM D -422)
➢Toinvestigatethepercentageofsoilparticlesfordifferentsizeranges.
➢Needtoknowsoilparticlesizedistributionforpredictionsitsstrengthand
properties,andforclassificationaccordingtoUnifiedSoilClassificationSystem.
➢Hydrometer Test –Sedimentation Process
-the distribution of particle size smaller than 75µm .
➢Sieve Analysis –Mechanical Sieving
-the distribution of particle size larger than 75µm.

37
Procedure for Mechanical Sieve Analysis
➢For Mechanical sieve analysis , prepare 200 g of the motored dry sample by
leaving the wet sample in the oven for 24 hours.
➢After the sample is dried , prepare the mechanical sieve analysis with series of
sieve as –No. ( 4,8,20,40,60,100,140,200).
➢Then , put the sample to the top sieve ( No. 4 ) and close the lid firmly and
starts running the mechanical shaker for 10 mins.
➢After shaking for 10 mins , record weight the soil retaining on each sieve and
pan with the balance sensitive to 0.01g for calculation and graph.
Percentage of sample retained on the sieve = Wt. of soil retained on the sieve divided
by total wt. of soil sample * 100

38
Procedure for Sedimentation Test ( Hydrometer Test )
➢Firstlyputthesoilsampleintheovenfor24hr.
➢Afterthat,sievethedrysoilsampleandpreparethesoilfinerthan75µmbypassing
No.200sieve(usinghandshakingmethod).
➢Thenprepare30goffinedsoilsampleforhydrometertest.
➢Transferthesoilsampletodispersioncupandmixwith0.48gsodium
hexametaphosphate.
➢Addsufficientamountofdistilledwatertofullthehalfofthedispersioncup.
➢Whenthemixtureisreadytodisperse,usethemechanicaldispenserandstirfora
periodof1min.
➢Immediatelyafterdispersion,transferthesoil-waterslurrytotheglasssedimentation
cylinder,andadddistilledordemineralizedwateruntilthetotalvolumeis1000ml.

39
➢Usingthepalmofthehandovertheopenendofthecylinder(orarubberstopperin
theopenend),turnthecylinderupsidedownandbackforaperiodof1minto
completetheagitationoftheslurry(60turns).
➢Afterthat,dipathermometerintothewaterinsulationtankandreadthedatato
ensurethewaterinsulationtankremainsconstanttemp:.
➢Thenplacethesedimentationcylinderintowaterinsulationtankandstartstotake
readingbyslowlyplacethe152Hhydrometerintosedimentationcylinder.
➢Takehydrometerreadingsatthefollowingintervalsoftime:2,5,15,30,60,
120,180,360,1440,2880,4320,5760,7200mins.
➢Calculatepercentfinerandthediameteroftheparticlebytherelatedequation.

40
Figure 15. Mechanical Sieve Analysis and Hydrometer Analysis

41
Calculation for Soil Particle Size Distribution ( ASTM-D422)
Calculation for Sedimentation Test ( Hydrometer Test )
➢PercentageofSoilRemaining,ForHydrometer152H,
P=(Ra/W)x100
P=Percentageofsoilremaininginsuspensionatthelevelatwhichthehydromet-
ermeasuresthedensityofthesuspension
R=Hydrometerreadingwithcompositecorrectionapplied
a=Correctionfactiontobeappliedtothereadingofhydrometer152H
W=Oven-drymassofsoilinatotaltestsamplerepresentedbymassof
soildispersed

➢Diameter of Soil Particles
D = K??????/??????
D = Diameter of particle, mm
K = Constant depending on the temperature of the suspension and the specficgravity
of the soil particles .
L = distance from the surface of the suspension to the level at which the density of
the suspension is being measured , cm .
N(%) = Percentage of mass passing sieve #200 is divided by Percentage of soil
remaining in suspension of sample multiply by 100
42

43

44

45
Sieve No
Sieve
Opening
(mm)
Retained Soil (g)% RetainedCommulative% % Finer
#4 4.75 0.00 0.00 % 0.00 % 100.00 %
#8 2.36 0.00 0.00 % 0.00 % 100.00 %
#20 0.841 0.00 0.00 % 0.00 % 100.00 %
#40 0.42 0.32 0.16 % 0.16 % 99.84 %
#60 0.25 0.48 0.24 % 0.40 % 99.60 %
#100 0.149 0.46 0.23 % 0.63 % 99.37 %
#140 0.106 0.52 0.26 % 0.89 % 99.11 %
#200 0.075 0.44 0.22 % 1.11 % 98.89 %
PAN 197.78
Total ∑ 200.00
Laboratory Results of Mechanical Sieve Analysis ( 0 -1.5 ft)

46
Elapsed
Time, t
(min)
Hydrometer Reading
(R)
R RcL L √L/t % Finer D (mm) N (%)
0.0750 98.8900
0.25 25.5 29.65 26.5 11.8
6.88
100.00 %0.0726 98.9580
0.5 25.5 29.65 26.5 11.8
4.87
100.00 %0.0617 98.9580
1 25 29.15 26 11.9 3.45 98.38 % 0.0438 97.2892
2 25 29.15 26 11.9 2.44 98.38 % 0.0309 97.2892
4 25 29.15 26 11.9 1.73 98.38 % 0.0219 97.2892
8 24.5 28.65 25.5 12.0 1.23 96.69 % 0.0155 95.6204
15 24 28.15 25 12.1 0.90 95.01 % 0.0114 93.9517
30 22 26.15 23 12.4 0.64 88.26 % 0.0082 87.2766
60 20 24.15 21 12.8 0.46 81.51 % 0.0058 80.6015
120 17.5 21.65 18.5 13.2 0.33 73.07 % 0.0042 72.2577
180 16 20.15 17 13.4 0.27 68.01 % 0.0035 67.2514
360 14 18.15 15 13.8 0.20 61.26 % 0.0025 60.5763
1440 13 17.15 14 14.0 0.10 57.88 % 0.0012 57.2388
2880 12 16.15 13 14.1 0.07 54.51 % 0.0009 53.9012
4320 10 14.15 11 14.5 0.1 47.76 %0.00073 47.2262
5760 8 12.15 9 14.8 0.1 41.01 %0.00064 40.5511
7200 6 10.15 7 15.1 0.0 34.26 %0.00058 33.8760
Laboratory Results of Hydrometer Test ( 0 -1.5 ft)

47
Soil Particle Size Distribution Curve And Results (0 -1.5 ft)
0
20
40
60
80
100
120
0.00010.0010.010.1110
Percent Finer (%)
Sieve Opening (mm)
Grain Size Distribution
Sieve
Hydro
From Graph
Gravel (%) 0.00 %
Sand (%) 1.11 %
Silt & Clay(%)98.89 %
Silt(%) 36.26 %
Clay (%) 49.45 %
Fine Sand (%)13.19 %

48
Laboratory Results of Mechanical Sieve Analysis ( 1.5 –3 ft)
Sieve No
Sieve
Opening
(mm)
Retained Soil (g)% RetainedCommulative% % Finer
#4 4.75 0.00 0.00 % 0.00 % 100.00 %
#8 2.36 0.00 0.00 % 0.00 % 100.00 %
#20 0.841 0.00 0.00 % 0.00 % 100.00 %
#40 0.42 0.45 0.23 % 0.23 % 99.78 %
#60 0.25 0.34 0.17 % 0.40 % 99.61 %
#100 0.149 0.62 0.31 % 0.71 % 99.30 %
#140 0.106 0.94 0.47 % 1.18 % 98.83 %
#200 0.075 0.74 0.37 % 1.55 % 98.46 %
PAN 196.91
Total ∑ 200.00

49
Laboratory Results of Hydrometer Test (1.5 –3 ft)
Elapsed
Time, t
(min)
Hydrometer Reading
(R)
R RcL L √L/t % Finer D (mm) N (%)
0.0750 98.4550
0.25 25 29.15 26 11.9
6.91
97.28 % 0.0726 95.7809
0.5 25 29.15 26 11.9
4.88
97.28 % 0.0609 95.7809
1 24.5 28.65 25.5 12.0
3.47
95.62 % 0.0432 94.1380
2 24 28.15 25 12.1
2.46
93.95 % 0.0307 92.4951
4 24 28.15 25 12.1
1.74
93.95 % 0.0217 92.4951
8 24 28.15 25 12.1
1.23
93.95 % 0.0153 92.4951
15 23 27.15 24 12.3
0.90
90.61 % 0.0113 89.2093
30 21 25.15 22 12.6
0.65
83.93 % 0.0081 82.6377
60 20 24.15 21 12.8
0.46
80.60 % 0.0058 79.3519
120 17 21.15 18 13.3
0.33
70.59 % 0.0041 69.4946
180 15 19.15 16 13.6
0.28
63.91 % 0.0034 62.9230
360 14 18.15 15 13.8
0.20
60.57 % 0.0024 59.6372
1440 12 16.15 13 14.1
0.10
53.90 % 0.0012 53.0656
2880 11 15.15 12 14.3
0.07
50.56 % 0.0009 49.7798
4320 9 13.15 10 14.6 0.1 43.89 % 0.00073 43.2082
5760 7 11.15 8 15.0 0.1 37.21 % 0.00064 36.6366
7200 5 9.15 6 15.3 0.0 30.54 % 0.00057 30.0650
49

50
Soil Particle Size Distribution Curve And Results (1.5 –3 ft)
0
20
40
60
80
100
120
0.00010.0010.010.1110
Percent Finer (%)
Sieve Opening (mm)
Grain Size Distribution
Sieve
Hydro
From Graph
Gravel (%)0.00 %
Sand (%)1.55 %
Silt &
Clay(%)
98.46 %
Silt(%)34.46 %
Clay(%) 49.23 %
Fine Sand(%)14.77 %

51
(Das B.M and SobhanK., (2012))

52
Figure 16. Soil Type Result Graph From Atterberg’s Limit
➢According to USCS , soil type is inorganic highly plastic silt ( MH )

➢Toinvestigatetheoptimumwater
content(w%)andmaximumdry
unitweight(γ
d)
maxforthesoil
sample.
➢Intheconstructionofhighway
embankments,earthdams,and
manyotherengineeringstructures,
loosesoilsmustbecompactedto
increasetheirunitweights.
➢Compactionincreasesthestrength
characteristicsofsoils,which
increasethebearingcapacityof
foundationsconstructedover
them.
53
Laboratory Study –Standard Proctor Test (ASTM D –698)
Figure 17. Typical compaction
curves for four soils

54
Description MethodA Method B Method C
Use SPT Material
Passing No.4
Sieve
Passing 9.5mm
(3/8 in) sieve
Passing 19mm
(3/4 in) sieve
Mold Volume 944????????????
3
(
1
30
????????????
3
)944????????????
3
(
1
30
????????????
3
)
2124????????????
3
(
1
13.33
????????????
3
)
Mold Diameter101.6 mm (4 in)101.6 mm (4 in)
152.4 mm
(6 in)
Mold Height
116.4 mm
(4.584 in)
116.4 mm
(4.584 in)
116.4 mm
(4.584 in)
Weight of Hammer24.4 N (5.5 lb) 24.4 N (5.5 lb)24.4 N (5.5 lb)
Height of Hammer305 mm (12 in)305 mm (12 in)305 mm (12 in)
Soil Layers 3 3 3
Number of Blows 25 25 56
Standard Proctor Test Specifications (ASTM D-698)

55
Figure 18. Standard Proctor Test equipment: (a) mold; (b) hammer

56
Figure 19. Standard Proctor Test Equipment

57
Calculation For Standard Proctor Test (ASTM-D 698)
➢Among three types of methods, method A is used.
➢The moist unit weight of compaction () , g, can be calculated as
=
W
Vm
Where; W = weight of the compacted soil in the mold
Vm= volume of the mold (944 cm
3
(
1
30
ft
3
))
➢The dry unit weight can be calculated as
γ
d
=

1+
w(%)
100
Where; w (%) = percentage of moisture content

58
Results SoilCompaction (0-1.5)
Mold
Weight
Mold+Soil W (kg) V (??????
3
) (kg/??????
3
)(%)γ
d(kg/??????
3

d(lb/ft
3
)
3.4675.191300961.724300960.0009441826.59 7% 1707.09 106.57
3.4675.378448961.911448960.0009442024.84 11% 1824.18 113.88
3.4675.492002722.025002720.0009442145.13 14% 1881.69 117.47
3.4675.454525921.987525920.0009442105.43 17% 1799.51 112.34
Laboratory Results of Standard Proctor Test
106
108
110
112
114
116
118
120
0% 5% 10% 15% 20%Dry unit weight,
γ
d (
lb
/ft
3
)
Moisture content, ω (%)
Compaction Curve

59
Results of SoilCompaction (1.5-3)
Mold
Weight
Mold+Soil W (kg) V (??????
3
) (kg/??????
3
)(%)γ
d(kg/??????
3

d(lb/ft
3
)
3.4675.145365921.678365920.0009441777.93 6% 1677.29 104.71
3.4675.318146241.851146240.0009441960.96 10% 1782.69 111.29
3.4675.422458241.955458240.0009442071.46 13% 1833.15 114.44
3.4675.414915681.947915680.0009442063.47 16% 1778.85 111.05
104
106
108
110
112
114
116
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Dry unit weight,
γ
d (
lb
/ ft
3
)
Moisture content, ω (%)
Compaction Curve

60
Laboratory Study –Direct Shear Test (ASTM D–3080)
➢Theshearstrengthofsoilisitsresistancetoshearingstresses.
➢Itisameasureofsoilresistancetodeformationbycontinuous
displacementofitsindividualsoilparticles.
➢Directsheartestisoneofthelaboratorymethodsfordeterminingthe
shearstrengthofthesoil.
Figure 20. Shearing Force & Normal Force

61
Purpose of Direct Shear Test
➢Toinvestigatecohesion,andangleoffriction,aswellasshearresistance.
Figure 21. Direct shear apparatusFigure 22. Dial gauge

62
Figure 23. Specimens after testing

63
Procedures For Direct Shear Test
➢Compactdisturbedsoilspecimeninacircularringwitharammerandweighit.
➢Thecompactedspecimenispressedintotheshearboxwiththeloadingpadandthe
shearboxissetup.
➢Placealoadcellonthetopofthespecimenintheshearbox.
➢Addweightoloadingframeandlevelwiththespiritlevelfromtheleverarm.
➢Applyincrementsofnormalforceuptotheequipmentlimitationsandrecordthe
normaldisplacementindicatorreadingandnormalforce.
➢Positionandzerothedialgaugeforhorizontaldeformation,andshearforce.
➢Obtaindatareadingsoftime,horizontaldisplacement,andshearforceatdesired
intervalsofdisplacement.
➢Threedifferentspecimensforeachsamplearetestedwiththesameprocedureswith
threeweightsof1.275kg,2.55kgand5.1kg.
➢Plotthehorizontaldeformationversusshearstresstogetmaximumshearstress.
➢Plotthevaluesofnormalstresstoshearstresstoobtainthecohesionandmeasurethe
slopeoftheline.

64
Calculation For Direct Shear Test(ASTM D–3080)
σ=
??????
??????
τ=
??????
??????
where, σ= Normal stress (kPa)
N = Normal load (kg)
A = Initial area of specimen (????????????
2
)
where,τ= Shear stress (kPa)
F = Shear force (kg)
A = Initial area of specimen (????????????
2
)

65
Laboratory Results of Direct Shear Test (ASTM D-3080)
Trial No
Area of
sample,
A (cm
2
)
Applied
Load,
N(kg)
Normal
Stress,
σ(kPa)
Shear Stress,
τ(kPa)
From Graph, Apparent
Cohesion,
c (kPa)
Friction
Angle, (ɸ)°
m (slope)c (const:)
1
30.00
1.275 50 28.71
0.22918.43 18.43 12.9 °2 2.550 100 43.03
3 5.100 200 63.60
Project : Rector Housing Date : 5.12.2023
Sample No : S-1
BH No :
Depth : 0 -1.5 ft
Soil Descrip:
Sample Properties
Diameter =6.00 cm Lever Arm Ratio =(1:12)
High =2.00 cm

66
Cycle1 1.275 kg
Shear DisplacementShear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 7.07 2.31189 23.12 23.12
1.0 8.1 2.64870 26.49 26.49
1.5 8.71 2.84817 28.48 28.48
2.0 8.78 2.87106 28.71 28.71
2.5 8.1 2.64870 26.49 26.49
3.0 7.08 2.31516 23.15 23.15
3.5 5.65 1.84755 18.48 18.48
4.0 4.88 1.59576 15.96 15.96
4.5 4.32 1.41264 14.13 14.13
5.0 3.9 1.27530 12.75 12.75
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

67
Cycle 2 2.55 kg
Shear
Displacement
Shear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 10.61 3.46947 34.69 34.69
1.0 12.14 3.96978 39.70 39.70
1.5 13.06 4.27062 42.71 42.71
2.0 13.16 4.30332 43.03 43.03
2.5 12.15 3.97305 39.73 39.73
3.0 10.62 3.47274 34.73 34.73
3.5 8.47 2.76969 27.70 27.70
4.0 7.31 2.39037 23.90 23.90
4.5 6.47 2.11569 21.16 21.16
5.0 5.85 1.91295 19.13 19.13
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

68
Cycle 3 5.1 kg
Shear
Displacement
Shear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 18 5.88600 58.86 58.86
1.0 19.45 6.36015 63.60 63.60
1.5 19.42 6.35034 63.50 63.50
2.0 18.72 6.12144 61.21 61.21
2.5 17.78 5.81406 58.14 58.14
3.0 16.95 5.54265 55.43 55.43
3.5 16.03 5.24181 52.42 52.42
4.0 15.38 5.02926 50.29 50.29
4.5 15.14 4.95078 49.51 49.51
5.0 14.74 4.81998 48.20 48.20
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

69
Mohr's Circles
Cycle 1 Cycle 2 Cycle 3
Degree x y x y x y
0 78.7 0.0 143.1 0.0 263.7 0.0
10 78.3 5.0 142.4 7.5 262.8 11.0
20 77.0 9.8 140.5 14.7 259.9 21.8
30 74.9 14.4 137.3 21.5 255.2 31.8
40 72.0 18.5 133.0 27.7 248.8 40.9
50 68.5 22.0 127.7 33.0 241.0 48.7
60 64.4 24.9 121.6 37.3 231.9 55.1
70 59.9 27.0 114.8 40.4 221.9 59.8
80 55.0 28.3 107.5 42.4 211.2 62.6
90 50.0 28.7 100.1 43.0 200.1 63.6
100 45.0 28.3 92.6 42.4 189.1 62.6
110 40.2 27.0 85.3 40.4 178.4 59.8
120 35.7 24.9 78.5 37.3 168.3 55.1
130 31.6 22.0 72.4 33.0 159.2 48.7
140 28.0 18.5 67.1 27.7 151.4 40.9
150 25.2 14.4 62.8 21.5 145.0 31.8
160 23.1 9.8 59.6 14.7 140.4 21.8
170 21.8 5.0 57.7 7.5 137.5 11.0
180 21.3 0.0 57.0 0.0 136.5 0.0

70
0
10
20
30
40
50
60
70
80
0 2 4 6 8 10 12
Shear Stress (kPa)
Shear Displacement (mm)
Shear Stress vs Shear Displacement: at failure
Cycle1 Cycle2 Cycle3

71
y = 0.2286x + 18.426
0
50
100
150
200
250
300
0 50 100 150 200 250 300
Shear Stress (kPa)
Normal Stress (kPa)
Mohr's Circle

72
Project : RectorHouse Date : 5.12.2023
Sample No : S-2
BH No :
Depth : 1.5 ft -3 ft
Soil Descrip:
Sample Properties
Diameter =6.00 cm Lever Arm Ratio =(1:12)
High =2.00 cm
Trial No
Area of
sample,
A (cm
2
)
Applied
Load,
N (kg)
Normal
Stress,
σ(kPa)
Shear Stress,
τ(kPa)
From Graph, Apparent
Cohesion,
c (kPa)
Friction
Angle, (ɸ)°
m (slope)c (const:)
1
30.00
1.275 50 21.84
0.05319.21 19.21 3.0 °2 2.550 100 24.49
3 5.100 200 29.76

73
Cycle 1 1.275 kg
Shear
Displacement
Shear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 5.08 1.66116 16.61 16.61
1.0 5.93 1.93911 19.39 19.39
1.5 6.41 2.09607 20.96 20.96
2.0 6.63 2.16801 21.68 21.68
2.5 6.68 2.18436 21.84 21.84
3.0 6.62 2.16474 21.65 21.65
3.5 6.54 2.13858 21.39 21.39
4.0 6.43 2.10261 21.03 21.03
4.5 6.39 2.08953 20.90 20.90
5.0 6.35 2.07645 20.76 20.76
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

74
Cycle 2 2.55 kg
Shear
Displacement
Shear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 6.37 2.08299 20.83 20.83
1.0 7.042 2.30273 23.03 23.03
1.5 7.252 2.37140 23.71 23.71
2.0 7.35 2.40345 24.03 24.03
2.5 7.378 2.41261 24.13 24.13
3.0 7.434 2.43092 24.31 24.31
3.5 7.434 2.43092 24.31 24.31
4.0 7.49 2.44923 24.49 24.49
4.5 7.392 2.41718 24.17 24.17
5.0 7.322 2.39429 23.94 23.94
5.5 7.266 2.37598 23.76 23.76
6.0 7.028 2.29816 22.98 22.98
6.5 7.014 2.29358 22.94 22.94
7.0 6.888 2.25238 22.52 22.52
7.5
8.0
8.5
9.0
9.5
10.0

75
Cycle 3 5.1 kg
Shear
Displacement
Shear Force, FShear Stress, τShear Stress, τ
(mm) (kg) (N/cm
2
) (kPa)
0.0 0 0.00000 0.00 0.00
0.5 6.67 2.18109 21.81 21.81
1.0 8.09 2.64543 26.45 26.45
1.5 8.75 2.86125 28.61 28.61
2.0 8.84 2.89068 28.91 28.91
2.5 8.84 2.89068 28.91 28.91
3.0 8.72 2.85144 28.51 28.51
3.5 8.73 2.85471 28.55 28.55
4.0 8.8 2.87760 28.78 28.78
4.5 8.84 2.89068 28.91 28.91
5.0 8.91 2.91357 29.14 29.14
5.5 8.88 2.90376 29.04 29.04
6.0 9.03 2.95281 29.53 29.53
6.5 8.96 2.92992 29.30 29.30
7.0 9.1 2.97570 29.76 29.76
7.5 8.92 2.91684 29.17 29.17
8.0 8.83 2.88741 28.87 28.87
8.5 8.72 2.85144 28.51 28.51
9.0 8.42 2.75334 27.53 27.53
9.5 8.35 2.73045 27.30 27.30
10.0 8.4 2.74680 27.47 27.47

76
Mohr's Circles
Cycle 1 Cycle 2 Cycle 3
Degree x y x y x y
0 71.9 0.0 124.6 0.0 229.9 0.0
10 71.5 3.8 124.2 4.3 229.4 5.2
20 70.6 7.5 123.1 8.4 228.1 10.2
30 68.9 10.9 121.3 12.2 225.9 14.9
40 66.8 14.0 118.8 15.7 222.9 19.1
50 64.1 16.7 115.8 18.8 219.3 22.8
60 61.0 18.9 112.3 21.2 215.0 25.8
70 57.5 20.5 108.4 23.0 210.3 28.0
80 53.8 21.5 104.3 24.1 205.3 29.3
90 50.0 21.8 100.1 24.5 200.1 29.8
100 46.2 21.5 95.8 24.1 195.0 29.3
110 42.6 20.5 91.7 23.0 189.9 28.0
120 39.1 18.9 87.8 21.2 185.2 25.8
130 36.0 16.7 84.3 18.8 181.0 22.8
140 33.3 14.0 81.3 15.7 177.3 19.1
150 31.1 10.9 78.9 12.2 174.4 14.9
160 29.5 7.5 77.0 8.4 172.2 10.2
170 28.5 3.8 75.9 4.3 170.8 5.2
180 28.2 0.0 75.6 0.0 170.4 0.0

77
0
10
20
30
40
50
60
70
0 2 4 6 8 10 12
Shear Stress (kPa)
Shear Displacement (mm)
Shear Stress vs Shear Displacement: at failure
Cycle1 Cycle2 Cycle3

78
y = 0.0527x + 19.211
0
50
100
150
200
250
0 50 100 150 200 250
Shear Stress (kPa)
Normal Stress (kPa)
Mohr's Circle

79
Determination of Bearing Capacity (Das B.M and SobhanK., (2012))
Friction angle of soil ( ∅

)
➢Soilfrictionangleisashearstrengthparameterofsoils.
➢ItsdefinitionisderivedfromtheMohr-Coulombfailurecriterionandisusedto
describethefrictionshearresistanceofsoilstogetherwiththenormaleffective
stress.
Bearing Capacity of Soil
➢Theloadperunitareaofthefoundationatwhichshearfailureinsoiloccurs
iscalledtheultimatebearingcapacity,q
ult.
➢Thebearingcapacityofsoildeterminesthetypesoffoundationofbuilding
structurewhethershallowordeepfoundation.

80
Allowable Bearing Capacity
➢The allowable bearing capacity is equal to the ultimate bearing capacity divided by the
factor of safety, which is 2.5 to 3.
q
a
= SF
q
ult
➢Bearing capacity equation is as follow:
??????
&#3627408482;??????&#3627408481;= c??????
??????+ q??????
&#3627408478;+0.5B??????
&#3627408479;
The General Bearing Capacity Equation

81
Angleoffriction, =3
Cohesion,c =19.21kPa=401lb/ft
3
DryDensity, =114.44lb/ft
3
??????
?????? =6.62 8
??????
&#3627408478; =1.35 8
??????
&#3627408479; =0.06 8
Byusinggeneralbearingcapacityequation,
??????
&#3627408482;??????&#3627408481;=c??????
??????+q??????
&#3627408478;+0.5B??????
&#3627408479;
??????
&#3627408482;??????&#3627408481;=(4016.62)+(114.4431.35)+(0.5114.4410.06)
??????
&#3627408482;??????&#3627408481;=3122lb/ft
2
(Atdepth=3)
SafetyFactor=3(assumedfrom8)
??????
??????=
3122
3
=1041lb/ft
2
=0.52ton/ft
2
(1ton=2240lb)
Calculation of Bearing Capacity

82
Ground Water Table (GWT)
➢Inwetseason,theGWTisonthegroundsurface.
➢Indryseason(winter),thereisnoGWTwithin3ftfromgroundsurface.
Figure 24. Water Table and Unsaturated –Saturated
Soils

83
Discussion and Conclusions (1/2)
➢Anysoilinvestigationreportshouldcontainatleastthefollowinginformation:
1.Scopeofinvestigation
2.Sitelocationmap
3.Aboutproposedstructure
4.Detailsofboring(Location)
5.Boringlogs
6.Groundwatertable
7.Laboratorytestresults
8.Limitationsoftheinvestigation(DasB.MandSobhanK.,(2012))
➢Afterconductingfieldandlaboratorystudies,thustheinformationforthe
proposedsitecanbereportedandconcludedasfollow:

84
Discussion and Conclusions (2/2)
➢Limitationofinvestigation:
-MaximumdepthofTestPitsareonly3ft.
-AccordingtoMNBC(2020),depthofboringforshallowfoundationdesign
shouldbeatleast30ft.
➢Allowable bearing capacity for the tested soil sample = 0.52 ton/ft
2
Test Pit
Depth
(ft)
Soil
Typ
e
SP.GR
(G
s)
Dry
Density
(d)
g/cm
3
Cohesion
(Cu)
kPa
Angle of
Internal
friction
(ø)
Moisture
Content
%
( ω)
Grading (%)
Fine %
Atterberg’s
Limits %
Gravel
(G)
Sand
(S)
Silt
(M)
Clay
(C)
LL PL
0 -1.5MH 2.6 117.47 18.43 12.9 28.74 0 14.2936.2649.45 85.7165.4948.02
1.5 -3MH 2.651114.44 19.21 3 27.52 0 16.3134.4649.23 83.6965.4948.02

85
Recommendations
➢Soilinvestigationbyboringshouldbedone,orthedepthofboringofatleast
30ftshouldbeconductedinordertoknowmuchinformationaboutsoilprofile.
➢Besidesforfoundationdesignfortheproposedbuilding,soilinvestigationreport
forroadsshouldbepreparedbydoingCBRtestinadditiontothesetests.

86
1BRAJAM.DAS,DEANEMERITUS–“PrinciplesofGeotechnicalEngineering,
EighthEdition”
2MyanmarNationBuildingCode,2020
3ASTM(2010),“Standardmethodformeasuringmoisturecontent-D2216”
4ASTM(2010),“Standardmethodforparticlesizedistribution-D422”
5ASTM(2010),“Standardmethodforspecificgravity-D854”
6ASTM(2010),“StandardmethodforAtterbergLimit-D4318”
7ASTM(2010),“StandardmethodforStandardProctorTest-D698”
8ASTM(2010),“StandardmethodforDirectShearTest-D3080”
References

87
Thank You.
Any Questions, Please?