It is the presentation of our group for integrated design project in Civil Engineering Department in West Yangon Technological University, Myanmar.
Size: 3.95 MB
Language: en
Added: May 08, 2024
Slides: 87 pages
Slide Content
SOIL INVESTIGATION
FOR
RECTOR HOUSE PROJECT
Presented by;
Geotechnical Engineering
Students (VI-BE Civil)
Supervised by:
DawSandarLin
Associate Professor
MINISTRY OF SCIENCE AND TECHNOLOGY
WEST YANGON TECHNOLOGICAL UNIVERSITY
DEPARTMENT OF CIVIL ENGINEERING
1/18/2024
2
List of Group Members
No RollNo: List of Member Sign
1 VI-C14 Ma Su MyatNoeAung
2 VI-C 26 Mg Ye HtutAung
3 VI-C 33 Mg ZawLwinHtooThant
4 VI-C38 Mg Lu Min Khant
5 VI-C 46 Ma PwintOoThu
6 VI-C 52 Mg Si Thu Win Htike
7 VI-C 53 Ma HtetHtetKhine
8 VI-C60 Mg Han KoOo
9 VI-C64 MgAung KyawHtet
10 VI-C 74 Mg TunMin Oo
11 VI-C 75 MgAung MyoKyaw
12 VI-C 76 Ma HninPwintWai
Outlines of Presentation
➢Introduction
➢Motivation and Objectives of
the Study
➢Study Area
➢Scope of the Study
➢Methodology
➢Field Study
➢Laboratory Study
➢Ground Water Table
➢Discussion & Conclusions
➢Recommendations
➢References
3
8
Motivation and Objectives of the Study
➢Motivation
-Asdiscussedabove,soilinvestigationplaysavitalrolethatwillenabletoplan
earthworkandfoundationworkproperlyandprecisely.
-AsGeotechnicalEngineeringSubjectgroup,soilinvestigationisconductedfor
theproposedbuildingsite(i.e,RectorHouse)inWYTUfortheIntegratedDesign
Project(IDP).
➢Objectives
-AimtomakesoilinvestigationfortheproposedRectorHouseconstruction
projectinordertogivetheproperandprecisesoilinformationforfoundationdesign.
-Toachievethismainobjective,thefollowingsub-objectivesareadopted.
✓Makingfieldstudytoselecttestpitsandsoilsampling.
✓Makinglaboratorystudytopresentbasicsoilproperties.
9
➢RectorHouse–two-storeyedRCCresidentialbuilding(54ftx54ft)
➢DistancefromRectorHouseareatotestpit(1)=20
➢DistancefromRectorHouseareatotestpit(2)=30
Figure 1. Location of Rector House at WYTU Campus
Study Area
10
Figure 2. Photograph of the Proposed Site
11
Scope of the Study
➢Soilsamplingfromtestpits,notboreholes
➢DepthofTestpit(1)=from0to1.5ftfromnaturalgroundlevel
➢DepthofTestpit(2)=from1.5ftto3ftfromnaturalgroundlevel
➢Laboratorytests-Moisturecontenttest,Specificgravitytest,Particlesize
distributiontest,Atterberglimit,StandardProctortest,andDirectsheartest
accordingtoAmericanSocietyforTestingandMaterials(ASTM)
➢Testpits–20~30ftfromtheborderoftheproposedRectorHousebecauseof
pondingwateronthegroundsurface,butwithin50ft
12
Methodology
Soil report
3.
Laboratory
study
2. Field
study
1. Literature
study
Literature study
1.Discussion
Field study
1.Site selection
2.Test pit
3.Sampling
Laboratory study
1.Moisture content test
2.Particle size distribution test
3.Specific gravity test
4.Atterberg limit test
5.Standard Proctor test
6.Direct shear test
13
Literature Study
➢Readingassignedliterature,anddiscussingaboutit.
Figure 3. Discussion about Literature
14
Field Study (1/2)
➢Selectingthesite
➢DiggingtwoTestpits
➢Soilsampling
Figure 4. Digging Test Pits
15
Field Study (2/2)
Figure 5. Soil Sampling and Air Drying Soil
16
Laboratory Study –Field moisture content (ASTM D-2216)
➢Toinvestigatethefieldwatercontentormoisturecontentofthesoilsample.
➢Procedures–
1.Measurethemassofthecleananddrycontainer.
2.Placethemoistsoilspecimeninthecontainer.
3.Measurethemassofthecontainerwithmoistspecimen.
4.Putthesoilcontainerintheovenat1105°Cfor24hr.
5.Afterthis,measurethemassoftheoven-drysoil.
6.Calculateitswatercontent.
Moisture Content (%) w=
ma−m
b
m
b
−mc
×100%=
mw
ms
×100%
Figure 6. Six samples
before putting in oven
18
Laboratory Study –Specific Gravity Test (ASTM D-854)
➢Toinvestigatethespecificgravity(G
s)ofthesoilsample.
➢Specificgravityisafundamentalpropertyofsoilsandotherconstructionmaterials.
➢Thespecificgravityofsoilsolidsisusedtocalculatethedensityofsoilsolids.
➢CalibrationofPycnometer
-Clean and dry the Pycnometer
-Measure mass of the pycnometer
-Filled it with distilled water
-Measure mass of (pycnometer + water ).
-Get temperature of the Distilled water.
-Determine the volume of the pycnometer (V
p)
19
Procedure for Specific Gravity Test
1.Empty and dry the pycnometer to put inside the soil sample.
2.Place distilled water into the pycnometer until its 1/3 or 2/3 water level.
3.Using the thermometer, measure the temperature of the distilled water.
4.Measure and record the mass of the pycnometer+ water.
5.Remove all the wet soil and placed in a pan.
6.Maintain the specimen with containers in an oven-dry at 110 ±5C.
7.After 24 hr, measure the mass of dry sample.
20
Figure7.VolumetricFlaskandContainer
forSpecificGravityTest
Figure 8. Maintain Soil Specimen
in drying oven at 114C
21
Figure 9. Using Thermometer for
Distilled Water
Figure10.WeighingDrySample
22
Calculation for Specific Gravity
V
p=
(Mpwc–M
p)
wc
V
p= the calibrated volume of pycnomter
M
pw,c= the mass of pycnometerand water at the calibrated temperature (g)
M
p= Mass of empty pycnometer
wc= Density of water at the calibrated temperature g/mL from ASTM D854-02 Table 2
M
pw,t=M
p+V
p
w,t
M
pw,t= the mass of pycnometerand water at the test temperature (g)
M
p= Mass of empty pycnometer
wt= Density of water at the test temperature g/mL from ASTM D854-02 Table 2
23
Calculate the specific gravity of soil solids at the test temperature ;
G
t=
Ms
Ms+Mρwt−Mρws,t
M
s= the mass of pycnometerand dry oven soil (kg)
M
wt= mass of pycnometerand water at the test temperature (kg)
M
ws,t= mass of pycnometerand water and soil at the test temperature (kg)
G
20C= K G
t
G
20C= the specific gravity of soil solids at the 20C.
K = temperature coefficient given in ASTM D854 Table-2.
➢The specific gravity of soils is in the range 2.60 to about 2.80.
➢The specific gravity of soil samples used in geotechnical studies has been found
to range from 1.96 to 2.54, with most values between 2.48 and 2.50.
24
Number of Pycnometer 1 2
Temperature ofwater at calibrated Temp:(C) 23.2C 23.2C
Temperature ofwater at TestTemp:(C) 23C 22.8C
Mass of Empty Pycnometer (kg) 0.05 0.043
Density of waterat calibrated Temp: (ASTM D-854) 0.99749 0.99749
Density of water at TestTemp: (ASTM D-854) 0.99754 0.99759
CalibratedVolume of Pycnometer 0.10025 0.10024
Calibration of Pycnometer for Specific Gravity Test
25
Numberof Pycnometer 1 2
Mass of Dry Soil passing No.4 Sieve(kg) 0.08 0.071
Mass of Pycnometer+ Dry Soil (kg) 0.13 0.114
Mass of Pycnometer+ Dry Soil + Water (kg) 0.23 0.221
Mass of Pycnometer+ Water at Test Temp: (kg)0.149998 0.14999
Specific Gravity 2.6 2.651
Temperature coefficient 1.00000 1.00000
Specific Gravity of soil at 20C 2.6 2.651
➢According to ASTM D-854, should calibrate up to six pycnometerto get specific
gravity at test temperature.
Laboratory Results of Specific Gravity
28
➢Placeasoilpasteinthecup.
➢Cutagrooveatthecenterofthesoilpastewiththestandardgroovingtool.
➢Liftthecupanddropitfromaheightof10mm,usingthecrank-operatedcam.Measurethe
watercontentrequiredtocloseadistanceof12.7mmalongthebottomofthegrooveand
notedownthenumberofblows.
➢Repeattheprocedureatleastthreetimesforthesamesoilatvaryingmoisturecontents.
➢Plotthemoisturecontentofthesoil,inpercent,andthecorrespondingnumberofblowson
semi-logarithmicgraph.Drawthebest-fitstraightlinethroughtheplottedpoints.
➢ThemoisturecontentcorrespondingtoN25,determinedfromthecurve,istheliquidlimit
ofthesoil.
Procedure For Liquid Limit Test
29
Figure 12. Atterberg Limit Equipments
Preparation for Liquid Limit Test
➢Plot the relationship between the water content, Wnand the corresponding number of
drops N of the cup on a semilogarithmic graph
➢Water content , Y-axis on arithmetical scale
➢No of drops , X-axis on a logarithmic scale
➢Draw the best straight line through the three or more plotted points
➢Take the water content corresponding to the intersection of line with the 25-drops as
liquid limit of the soil
➢Round to the nearest whole number
30Figure 13. Relation of Water Content & Number of Blow, N
32
Laboratory Results of Atterberg Limit ( Liquid Limit )
Trial no. 1 2 3
No. of blows 22 31 35
Wt. of container in kg. 0.011 0.011 0.010
Wt. of container +
wet soil, kg.
0.0283 0.0317 0.0266
Wt. of container +
dry soil, kg.
0.0215 0.0237 0.0194
Wt. of water, in kg. 0.0068 0.008 0.0072
Wt. of dry soil, in kg.0.0105 0.0127 0.0094
Water content, w in % 66.7 63.5 59.5
➢Soilsampleisrolledouttoadiameterof3mm(1/8”).
➢Ifthethreadcrumblesatdiametersmallerthan3mm,thesoilistoowet.
➢Ifthethreadcrumblesatadiametergreaterthan3mm,thesoilisdrierthanthe
plasticlimit.
➢Thesamplecanthenberemoldedandthetestrepeated.
➢Oncetheappropriatesizerollsaremade,theirmoisturecontentisassessedusing
theproceduredescribedpreviously.
33
Figure 14. Plastics Limit
Procedure For Plastics Limit Test
Calculation For Plastics Limit Test (ASTM D-4318)
➢Computetheaverageoftwowatercontainersandroundtothenearest
wholenumber
➢Thisvalueistheplasticlimit,PL
PlasticityIndex
➢PlasticityIndex(PIorI
P)iscalculatedasthePlasticLimitsubtractedfrom
theLiquidLimitandisanimportantvaluewhenclassifyingsoiltypes.
PI=LL-PL
34
Where; PI = Plasticity Index
LL = Liquid Limit
PL = Plastic Limit
35
Laboratory Results of Atterberg Limit ( Plastics Limit )
Trialno. 1 2 3
Wt. of container in kg 0.011 0.011 0.011
Wt. of container + wet soil in kg0.0232 0.0202 0.0199
Wt. of container + dry soil in kg0.0209 0.0184 0.0179
Wt. of water in kg 0.0023 0.0018 0.002
Wt. of dry soil in kg 0.0132 0.011 0.011
Water content, w in % 17.42 16.22 18.18
36
Laboratory Study –Particle Size Distribution Test (ASTM D -422)
➢Toinvestigatethepercentageofsoilparticlesfordifferentsizeranges.
➢Needtoknowsoilparticlesizedistributionforpredictionsitsstrengthand
properties,andforclassificationaccordingtoUnifiedSoilClassificationSystem.
➢Hydrometer Test –Sedimentation Process
-the distribution of particle size smaller than 75µm .
➢Sieve Analysis –Mechanical Sieving
-the distribution of particle size larger than 75µm.
37
Procedure for Mechanical Sieve Analysis
➢For Mechanical sieve analysis , prepare 200 g of the motored dry sample by
leaving the wet sample in the oven for 24 hours.
➢After the sample is dried , prepare the mechanical sieve analysis with series of
sieve as –No. ( 4,8,20,40,60,100,140,200).
➢Then , put the sample to the top sieve ( No. 4 ) and close the lid firmly and
starts running the mechanical shaker for 10 mins.
➢After shaking for 10 mins , record weight the soil retaining on each sieve and
pan with the balance sensitive to 0.01g for calculation and graph.
Percentage of sample retained on the sieve = Wt. of soil retained on the sieve divided
by total wt. of soil sample * 100
38
Procedure for Sedimentation Test ( Hydrometer Test )
➢Firstlyputthesoilsampleintheovenfor24hr.
➢Afterthat,sievethedrysoilsampleandpreparethesoilfinerthan75µmbypassing
No.200sieve(usinghandshakingmethod).
➢Thenprepare30goffinedsoilsampleforhydrometertest.
➢Transferthesoilsampletodispersioncupandmixwith0.48gsodium
hexametaphosphate.
➢Addsufficientamountofdistilledwatertofullthehalfofthedispersioncup.
➢Whenthemixtureisreadytodisperse,usethemechanicaldispenserandstirfora
periodof1min.
➢Immediatelyafterdispersion,transferthesoil-waterslurrytotheglasssedimentation
cylinder,andadddistilledordemineralizedwateruntilthetotalvolumeis1000ml.
40
Figure 15. Mechanical Sieve Analysis and Hydrometer Analysis
41
Calculation for Soil Particle Size Distribution ( ASTM-D422)
Calculation for Sedimentation Test ( Hydrometer Test )
➢PercentageofSoilRemaining,ForHydrometer152H,
P=(Ra/W)x100
P=Percentageofsoilremaininginsuspensionatthelevelatwhichthehydromet-
ermeasuresthedensityofthesuspension
R=Hydrometerreadingwithcompositecorrectionapplied
a=Correctionfactiontobeappliedtothereadingofhydrometer152H
W=Oven-drymassofsoilinatotaltestsamplerepresentedbymassof
soildispersed
➢Diameter of Soil Particles
D = K??????/??????
D = Diameter of particle, mm
K = Constant depending on the temperature of the suspension and the specficgravity
of the soil particles .
L = distance from the surface of the suspension to the level at which the density of
the suspension is being measured , cm .
N(%) = Percentage of mass passing sieve #200 is divided by Percentage of soil
remaining in suspension of sample multiply by 100
42
52
Figure 16. Soil Type Result Graph From Atterberg’s Limit
➢According to USCS , soil type is inorganic highly plastic silt ( MH )
➢Toinvestigatetheoptimumwater
content(w%)andmaximumdry
unitweight(γ
d)
maxforthesoil
sample.
➢Intheconstructionofhighway
embankments,earthdams,and
manyotherengineeringstructures,
loosesoilsmustbecompactedto
increasetheirunitweights.
➢Compactionincreasesthestrength
characteristicsofsoils,which
increasethebearingcapacityof
foundationsconstructedover
them.
53
Laboratory Study –Standard Proctor Test (ASTM D –698)
Figure 17. Typical compaction
curves for four soils
54
Description MethodA Method B Method C
Use SPT Material
Passing No.4
Sieve
Passing 9.5mm
(3/8 in) sieve
Passing 19mm
(3/4 in) sieve
Mold Volume 944????????????
3
(
1
30
????????????
3
)944????????????
3
(
1
30
????????????
3
)
2124????????????
3
(
1
13.33
????????????
3
)
Mold Diameter101.6 mm (4 in)101.6 mm (4 in)
152.4 mm
(6 in)
Mold Height
116.4 mm
(4.584 in)
116.4 mm
(4.584 in)
116.4 mm
(4.584 in)
Weight of Hammer24.4 N (5.5 lb) 24.4 N (5.5 lb)24.4 N (5.5 lb)
Height of Hammer305 mm (12 in)305 mm (12 in)305 mm (12 in)
Soil Layers 3 3 3
Number of Blows 25 25 56
Standard Proctor Test Specifications (ASTM D-698)
55
Figure 18. Standard Proctor Test equipment: (a) mold; (b) hammer
56
Figure 19. Standard Proctor Test Equipment
57
Calculation For Standard Proctor Test (ASTM-D 698)
➢Among three types of methods, method A is used.
➢The moist unit weight of compaction () , g, can be calculated as
=
W
Vm
Where; W = weight of the compacted soil in the mold
Vm= volume of the mold (944 cm
3
(
1
30
ft
3
))
➢The dry unit weight can be calculated as
γ
d
=
1+
w(%)
100
Where; w (%) = percentage of moisture content
60
Laboratory Study –Direct Shear Test (ASTM D–3080)
➢Theshearstrengthofsoilisitsresistancetoshearingstresses.
➢Itisameasureofsoilresistancetodeformationbycontinuous
displacementofitsindividualsoilparticles.
➢Directsheartestisoneofthelaboratorymethodsfordeterminingthe
shearstrengthofthesoil.
Figure 20. Shearing Force & Normal Force
61
Purpose of Direct Shear Test
➢Toinvestigatecohesion,andangleoffriction,aswellasshearresistance.
Figure 21. Direct shear apparatusFigure 22. Dial gauge
62
Figure 23. Specimens after testing
63
Procedures For Direct Shear Test
➢Compactdisturbedsoilspecimeninacircularringwitharammerandweighit.
➢Thecompactedspecimenispressedintotheshearboxwiththeloadingpadandthe
shearboxissetup.
➢Placealoadcellonthetopofthespecimenintheshearbox.
➢Addweightoloadingframeandlevelwiththespiritlevelfromtheleverarm.
➢Applyincrementsofnormalforceuptotheequipmentlimitationsandrecordthe
normaldisplacementindicatorreadingandnormalforce.
➢Positionandzerothedialgaugeforhorizontaldeformation,andshearforce.
➢Obtaindatareadingsoftime,horizontaldisplacement,andshearforceatdesired
intervalsofdisplacement.
➢Threedifferentspecimensforeachsamplearetestedwiththesameprocedureswith
threeweightsof1.275kg,2.55kgand5.1kg.
➢Plotthehorizontaldeformationversusshearstresstogetmaximumshearstress.
➢Plotthevaluesofnormalstresstoshearstresstoobtainthecohesionandmeasurethe
slopeoftheline.
64
Calculation For Direct Shear Test(ASTM D–3080)
σ=
??????
??????
τ=
??????
??????
where, σ= Normal stress (kPa)
N = Normal load (kg)
A = Initial area of specimen (????????????
2
)
where,τ= Shear stress (kPa)
F = Shear force (kg)
A = Initial area of specimen (????????????
2
)
65
Laboratory Results of Direct Shear Test (ASTM D-3080)
Trial No
Area of
sample,
A (cm
2
)
Applied
Load,
N(kg)
Normal
Stress,
σ(kPa)
Shear Stress,
τ(kPa)
From Graph, Apparent
Cohesion,
c (kPa)
Friction
Angle, (ɸ)°
m (slope)c (const:)
1
30.00
1.275 50 28.71
0.22918.43 18.43 12.9 °2 2.550 100 43.03
3 5.100 200 63.60
Project : Rector Housing Date : 5.12.2023
Sample No : S-1
BH No :
Depth : 0 -1.5 ft
Soil Descrip:
Sample Properties
Diameter =6.00 cm Lever Arm Ratio =(1:12)
High =2.00 cm
71
y = 0.2286x + 18.426
0
50
100
150
200
250
300
0 50 100 150 200 250 300
Shear Stress (kPa)
Normal Stress (kPa)
Mohr's Circle
72
Project : RectorHouse Date : 5.12.2023
Sample No : S-2
BH No :
Depth : 1.5 ft -3 ft
Soil Descrip:
Sample Properties
Diameter =6.00 cm Lever Arm Ratio =(1:12)
High =2.00 cm
Trial No
Area of
sample,
A (cm
2
)
Applied
Load,
N (kg)
Normal
Stress,
σ(kPa)
Shear Stress,
τ(kPa)
From Graph, Apparent
Cohesion,
c (kPa)
Friction
Angle, (ɸ)°
m (slope)c (const:)
1
30.00
1.275 50 21.84
0.05319.21 19.21 3.0 °2 2.550 100 24.49
3 5.100 200 29.76
78
y = 0.0527x + 19.211
0
50
100
150
200
250
0 50 100 150 200 250
Shear Stress (kPa)
Normal Stress (kPa)
Mohr's Circle
79
Determination of Bearing Capacity (Das B.M and SobhanK., (2012))
Friction angle of soil ( ∅
′
)
➢Soilfrictionangleisashearstrengthparameterofsoils.
➢ItsdefinitionisderivedfromtheMohr-Coulombfailurecriterionandisusedto
describethefrictionshearresistanceofsoilstogetherwiththenormaleffective
stress.
Bearing Capacity of Soil
➢Theloadperunitareaofthefoundationatwhichshearfailureinsoiloccurs
iscalledtheultimatebearingcapacity,q
ult.
➢Thebearingcapacityofsoildeterminesthetypesoffoundationofbuilding
structurewhethershallowordeepfoundation.
80
Allowable Bearing Capacity
➢The allowable bearing capacity is equal to the ultimate bearing capacity divided by the
factor of safety, which is 2.5 to 3.
q
a
= SF
q
ult
➢Bearing capacity equation is as follow:
??????
�??????�= c??????
??????+ q??????
�+0.5B??????
�
The General Bearing Capacity Equation
82
Ground Water Table (GWT)
➢Inwetseason,theGWTisonthegroundsurface.
➢Indryseason(winter),thereisnoGWTwithin3ftfromgroundsurface.
Figure 24. Water Table and Unsaturated –Saturated
Soils