Introduction notes and design of low rise industrial building (1).pdf

Philip758910 58 views 77 slides Jun 10, 2024
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

design of lowrise buildings


Slide Content

Introduction
Objectives
Theaimofthestructuralengineeristoproduce
safeandeconomicalstructuresthatmeetstated
functionalandaestheticrequirements.The
majorgoalofthiscourseistoserveasan
introductiontostructuraldesignasyougain
moreexperience.Thisincludesanintroduction
totheconceptsofdesign,loaddetermination
anddistribution.

Introduction
Whatisastructure?
Astructurecanbedefinedinabuildingcontextasa
deviceoraphysicalobjectforchannelingitsself-weight
andloadsresultingfromitsusetotheground.
Astructurecanbevisionedasanorganizationof
positionedelementsinspaceinwhichthecharacterof
thewholedominatestheinter-relationshipof
theparts.

Typesofstructures
Thebasictypesofstructuresare:
FrameStructures:Thesystemconsistsofanassemblageoflinearmembersbeams
andcolumns)connectedbyrigidorsemi-rigidconnections.Itcanbeplanar(2-
dimensional)orspace(3dimensional).Theskinortheenvelopeisnotusually
consideredtoresistloadsotherthanitsself-weightandtotransferlocallateral
loadstothemainframingsystem.Contributionofpartitionsandinfillwallsinthe
lateralloadresistanceisusuallyignored.
WallStructures:Thesystemconsistsofwallarrangedinthetwoorthogonal
directions.Thesewallscarryverticalloadsfromfloorslabsandlateralloadsfrom
windorearthquakes.Thesewallsactasverticaldiaphragmsinteractingand
connectedbyhorizontalfloordiaphragms.
ShellStructures:Thesurfacesactasthemainload-carryingsystem.External
verticalloadsaremainlycarriedbymembraneaxialforcesmakingthesystem
capableofspanninglargespanswiththinmembers.

Typesofstructures
Horizontal
spanstructuresystemssuchasfloors,roofsandbridges
Verticalbuildingstructuresystemssuch as
frame,wall,corestructures,etc.

DesignSteps
Thedesignprocessfollowswell-definedstepsortasks:
1-Selectionoftypeandlayoutofthestructure
2-Definethestructuralsystemanditsbehaviorunderload
3-Determinetheloadsonthestructure
4-Definethemainstructuralmembercomponentsandtheirsupports
5-Determineinternalforcesandmomentsinthestructuralmembers
6-Definethecriteriaformemberdesign(i.e.codesandspecifications)
7-Selectmembersizesandconnectionsandprovidedetailsofdesign
8-Checktheperformanceofthestructureunderserviceloads(drift,vibration,cracking)
9-Finalreview(especiallytheassumeddeadloads)andredesignifnecessary
10-Documentation

GuidingPrinciples
The following are the guiding principles for design of building
structures:
To assist the team to develop the best concept.
To integrate all architectural, structural and environmental
requirements.
To provide a safe design.
To provide an economical design.
To present the design in a clear manner.
To make a profit

StructuralDesignCriteria
Strength:Itisgenerallybasedonlimitingstressesinindividual
elements.Ultimatelimitstateprovidesanadequatemeansof
assessingthesafetymarginsagainstoverloadingandunderstrength.
Forhigh-risebuildingslargeverticalloadsexistandtheneedforhigh
strengthmaterialsbecomesapparent.
Serviceability:toensureacceptableverticaldeflectionoffloorslabs
andbeamsundergravityloadsandlateraldeflection(drift)ofthe
lateralloadresistingsystemssuchasframesandshearwallsunder
windand/orearth-quakeloads.Interstorydriftistypicallylimitedto
0.5%forachievingstability(theP-∆effect),integrityofnonstructural
elementsandcomfortofoccupants.

StructuralDesignCriteria
Ductility:Itistheabilityofmembersandthestructureasawholeto
undergolargeinelasticdeformationwhilemaintainingresistanceto
loads.Thehighertheabilityofinelasticdeformationthelessthe
inducedinertiaforcesduringearthquakes.
Stability:Stabilityofmembersisrarelyaconsiderationindesign,but
theoverallstabilityofthestructureasawhole(againstoverturning)
needstobechecked,particularlyfortallbuildings.

STRUCTURALRESPONSE
Structuresrespondtoappliedloadsbydeformingtherebydissipating
energythroughthedevelopmentofinternalforces.Structuralresponseisa
functionofloadintensityandtype,characteristicsofthestructure(shape,
dimensions,material,detailing)andtypeoffoundationandsoil.
Stiffness
Brittleness
Ductility
Overturningslidinganduplift
Structures,inadditiontotheirresponsetoappliedloads,theyalsorespond
toothereffectssuchastemperature,creepandshrinkageandmoisture
expansion.

ObjectivesofStructuralDesign
The main objectives/goals of structural design are:
1-Adequate performance under service loads. This is referred to as
“Serviceabiltylimit state” and it concerns with deflection limits,
vibrationcontrol and crack control.
2-Adequate factor of safety against failure/collapse in case of
overloading.Ultimate limit state
3-Economy (initial and long-term)

Loads of structure
Astructuremustbestrongandstiffenoughtoresistthemanytypesof
geophysicalandmanmadeforcesimposedonit.Themagnitudeand
directionoftheseforcesvarywiththematerial,typeofstructural
system,functionandimportanceofthebuildingandlocality.These
loadsandactionsandtheircombinedeffectshavetobeconsideredin
design.

Loads on structure
Thefollowing are the common classification of loads:
Vertical Loads: Dead, Live, Snow, Rain
Lateral Loads: Wind, Earthquakes, Lateral soil pressure, Liquid pressure,
Temperature effect.
Other effectsAbnormal loads such as impact and gas explosion,
Differential settlement/movementCreep and shrinkage effects.

CONSTRUCTABILITY
Constructabilityistheoptimumuseofconstructionknowledgeand
fieldexperienceinplanning,design,procurementandfieldoperations
toachievetheprojectobjectives.Constructabilityinvolvestheprocess
ofthinkingthroughtheentireprojectpriortothebeginningofthe
actualdesign.Suchanactivityfocusesonmaximizingthesimplicity,
economyandspeedofconstruction,whileconsideringthesite
conditions,coderestrictionsandowner’srequirements.

Concept design
•Typeofconstruction—reinforcedconcrete,precastconcrete,reinforced
masonry,structuralsteel,coldformedsteel,wood,etc.
•Columnlocations—Auniformgridfacilitatesrepetitivemembersizes,reducing
thecostandincreasingthespeedofconstruction.Baydimensionsmayalsobe
optimizedtominimizematerialquantitieswhileefficientlyaccommodating
specificspacerequirements,suchasparkinggaragesandpartitionlayouts.
•Bracingorshearwalllocations—Horizontalforcesduetowind,earthquakes,etc.
mustbetransferreddownfromthesuperstructuretothefoundations.Themost
efficientmeansofaccomplishingthisisusuallytoprovideverticalbracingor
shearwallsorientedineachprincipledirection,whichmustbecoordinatedwith
functionalandaestheticrequirementsforpartitions,doors,andwindows.
•Floorandroofpenetrations—Specialframingisoftenrequiredtoaccommodate
stairs,elevators,mechanicalchases,exhaustfans,andotheropenings.

Concept design
•Floor-to-floorheights—Adequatespacemustbeprovidedfornotonlythe
structureitself,butalsoraisedfloors,suspendedceilings,ductwork,piping,lights,
andcablerunsforpower,communications,computernetworks,etc.Thismay
affectthetypeoffloorsystem(reinforcedconcretebeams,joists,orflatplates;
structuralsteelbeamsoropenwebsteeljoists;cold-formedsteelorwoodjoists
ortrusses)thatisselected.
•Exteriorcladding—Thebuildingenvelopenotonlydefinestheappearanceofthe
facility,butalsoservesasthebarrierbetweentheinsideandoutsideworlds.It
mustbeabletoresistwindandotherweathereffectswhilepermittingpeople,
light,andairtopassthroughopeningssuchasdoors,windows,andlouvers.
•Equipmentandutilityarrangements—Largeequipment(airhandlingunits,
condensers,chillers,boilers,transformers,switchgear,etc.)andsuspended
utilities(ductwork,piping,lightfixtures,conduits,cabletrays,etc.)require
adequatesupport,especiallyinareassubjecttoseismicactivitythatcaninduce
significanthorizontalforces.

Study of architectural drawings
Asthebuildingistobeconstructedasperthedrawings
preparedbytheArchitect,itnecessaryfortheDesignerto
correctlyvisualizethestructuralarrangementasproposedby
theArchitect.Adesignengineer,afterstudyingArchitect’s
plans,cansuggestnecessarychangelikeadditions/deletions
andorientationsofcolumnsandbeamsasrequiredfrom
structuralpointofview.

Study of architectural drawings
•Whethertheplanshowsalltherequireddimensionsandlevelssothatthe
designercanarriveatthelengthsandsizesofdifferentmembers.Wherever
necessary,obligatorymembersizeasrequiredbyArchitect(onarchitectural
grounds)aregivenorotherwise.
•Whethertheplansandschedulesofdoorsandwindowsetc.aresuppliedsoasto
enabledesignertodecidebeamsizeattheselocations.
•Whetherthicknessofvariouswallsandtheirheight(incaseofpartitionwalls)is
given.
•Whetherfunctionalrequirementsandutilityofvariousspacesarespecifiedinthe
plans.Thesedetailswillhelpindecidingtheimposedloadonthesespaces.
•Whethermaterial/ratingsforwallsarespecified.

Study of architectural drawings
•Note the false ceiling, lighting arrangement, lift/s along with their
individual carrying capacity (either passenger or goods ), Air Conditioning
ducting, acoustical treatment ,R.C.C. cladding, finishing items, fixtures,
service/s’ opening proposed by the Architect .
•Note the position/s of expansion joints, future expansion (horizontal and/
vertical) contemplated in the Architect’s plan and check up with the
present scope of work (indicated in the "Field Data" submitted by the field
engineers).The design of the present phase will account for future
expansion provision such as loads to be considered for column and footing
design (combined /expansion joint footing) resulting if any .
•Whether equipment layout has been given, particularly in the areas where
heavy machinery is proposed to be located.

Study of architectural drawings
•Whether the location/s of the over head water tanks specified by the
Architect and whether "Field Data“ submitted by field engineer furnishes
the required capacity of each over head water tank
•What type of water proofing treatment is proposed?
•Cranes?
•Forklift? Size, use etc
•What is the end users intent for the structure?
•Partitions deflection windows
•Stormwaterand sewer lines along with a variety of other services such as
electrical conduits lift pits and even air conditioning ducts will need to
coordinate with our foundations.

Choice of structural material
Thefollowingarethefactorsthataffectthechoiceofmaterialtobe
usedforthestructuralsystem:
•Economy/availability•Architecturalandstructuralfunctions•Fire
resistance•Rigidity•Maintenance•Availabilityofmaterials•Familiarity
withmaterials,designandconstruction

Geometry and conceptual design

Architectural drawings

•Level1:Thelowergroundfloor(basement)oftheproduction
warehousewasproposedforstorageofrawmaterials
•Level2:Theuppergroundflooroftheproductionwarehouseata
levelof3.3mhigh,wastobeafurtherstorageareaforrawmaterials,
fillingspaceandoperationsoffices.Thedispatchwarehouseatthis
levelwastobeusedforfinishedgoodsdispatch.
•Level3and4:Thesefloorswerereferredtoaslowerandupper
mezzaninefloorboth3.9mhigh,wereproposedformorestorageof
paintpowderandpaintmixingtanksinaproductionline.Therewas
alsospaceforofficesandtemporarystorageforfinishedgoodsatthe
dispatchwarehouse.

•Thegeneralproposalwastohavetwoportalframes,spanning22m
(Productionwarehouse)and12m(dispatcharea)detachedfromeach
otherby4.5mwiththreelevelsoffloorsontheproductionwarehouse.In
additionalean-to5.5mspanwasintroducedtoproductionwarehouseto
caterforofficespace.Onelevelofflooronthedispatchareawithdouble
volumegroundfloorbelowwasproposed.Theportalframesarespacedat
5.5mgivingatotalof22minlengthforbothwarehouses.
•Reinforcedconcretewasproposedforuseinconstructinggroundfloors
includingfoundations.Duetothegroundsitelevelsbeingdifferent,the
dispatchareawasatahigherground(steppedby2.1m).Thetwoupper
floorsontheproductionwarehouseandtheonefloorinthedispatcharea
wereconstructedusingstructuralsteel.

Dead loads
•The dead load on a structure includes all the permanent loads and
these comprises of the self-weight of all structural members, weight
of all walls, partitions, floors, roofs and also includes the weight of all
other permanent constructions in the buildings. The following dead
loads were used in analysis and design of the various structural
members in this project. Loads which are specific to particular
members and not in this list, have been specified elsewhere in the
analysis and design extracts of those members within this report.

Dead load
•Steel roof sheeting including all fixtures = 0.05kN/m
2
•Purlins including cleats and fish plates = 0.05 kN/m
2
•Upper and lower structural steel mezzanine Floor decking from
chequeredplate of 6mm thick including all fixtures = 1kN/m
2
•Edge Wall based on concrete blocks of 200mm = 3 kN/m
2
•Floor tiles = 0.7 kN/m
2
•Floor screed = 1.2 kN/m
2
•Self-weight of all structural elements from manufacturer’s data not
mentioned here. The software used in analysis and design generates
self-weight loads of the various structural elements being designed.

Live load
Live loads on the floors and roof shall comprise of all loads other than
dead load.
•Imposed load over the roof used is 0.6kN/m
2
for a roof with no access
•Floor loading for warehousing and storage areas subject to
accumulation of goods and areas for equipment and plant. A dense
mobile stacking of paint powder packed in cartons or sacks was
assumed giving an approximate loading of 20kN/m
2
.
•Corridors, passages, staircases including fire escapes, lobbies,
balconies a load of 5 kN/m
2

Service loads
Loading due to services will vary greatly depending on the use of the
structure. Service load over the whole roof was assumed as 0.25 kN/m
2
and a further 0.8 kN/m
2
for the floors.

Wind loads
Itisnotcommonforloadcombinationsincludingwindtodetermine
thesizeofmembersinlow-risesingle-spanportalframelikeinthe
presentcase.Howeverwindloadingwasnotignoredbutcombined
withotherloadsfordesignandanalysispurposes.Standardmethod
wasusedwheretheeffectivewindspeedineachorthogonaldirection
iscalculatedbyconsideringthemostonerousvalueforallthefactors
thataffectthewindspeedoverarangeof45
0
eithersideofthe
orthogonaldirections.Windloadcorrespondingtobasicwindspeedof
46m/sisconsideredasperCP3part5.

Example of wind load calculation
•Wind load corresponding to basic wind speed of 25 m/s is considered as per BS: 6399-
•Part II
•Data available
•Height of building = 20m
•Location = Dubai
•Basic wind speed = 25 m/s
•Longest side = 110.3m
•Shortest side = 39.15m
•Site Altitude = 0m
•The dynamic pressure is given by
•qs= 0.613Ve²
•Ve= Effective wind speed (Clause 2.2.3, BS: 6399-Part II)
•Ve=Vs×Sb
•Vs= Site speed from (Clause 2.2.2, BS: 6399-Part II)

Continuation
•Sb= Terrain and building factor (Clause 2.2.3.3, BS: 6399-Part II)
•Vs= Vb×Sa×Sd×Ss×Sp
•Where
•Vb=Basic wind speed = 25m/s (Clause 2.2.1, BS: 6399-Part II)
•Sa=Altitude factor = 1+0.001Δs (Clause 2.2.2.2, BS: 6399-Part II)
•Sa =1 Sd=Directionalfactor =1
•Ss=Seasonal factor =1(Clause 2.2.2.4, BS: 6399-Part II)
•Sp=Probability factor =1(Clause 2.2.2.5, BS: 6399-Part II)
•Then

•Vs= Vb×Sa×Sd×Ss×Sp
•= 25×1×1×1×1
•= 25m/s
•Ve= Vs×Sb
•Where Sb=1.77(Table 4 BS: 6399-Part II) with respect to He = 20m
•Ve= 25×1.77
•= 44.25 m/s
•Therefore qs= 0.613×Ve²
•=0.613×44.25²
•= 1.2 KN/m²

Load Combinations and Partial Safety Factors
Thefollowingloadcombinationsandpartialsafetyfactorswereusedin
theanalysisanddesignofthevariousstructuralmembersguidedby
relevantcodesofpracticeandstandards(5950part1andBS8110part
1).Thesecombinationswereappliedappropriatelydependingonthe
typeofthestructuralmemberandlimitstate,withtheintentionof
achievingthemostcriticalappliedloadingsystem.Theanalysisand
designresultspresentedinthisdocumentarethatfromacriticalload
combinationforserviceabilityandultimatecases.

•1.4Dead load + 1.6Live load
•1.2Dead load + 1.2Live load±1.2Wind load(X)
•1.2Dead load + 1.2Live load±1.2Wind load(Y)
•1.0Dead load + 1.0Live load (serviceability)
•1.0Dead load + 1.0Live load±1.0Wind load(X) (serviceability)
•1.0Dead load + 1.0Live load±1.0Wind load(Y) (serviceability)
•1.0Live load (serviceability)

Wind load on roof and wall

Frame at section C-C

Typical mezzanine model

Main RafterMember Loading and Member Forces
Loading Combination : 1 UT + 1.2 D1 + 1.2 L1 + 1.2 W1

D1 D 078.500 ( kN/m³)
D1 UDLY -000.350 [ kN/m ]
L1 UDLY -000.600 [ kN/m ]
W1 UDLN +005.769 [ kN/m ]


Member Forces in Load Case 2 and Maximum Deflection from Load Case 6
Mem
ber
No.
Node
End1
End2
Axial
Force
(kN)
Torque
Moment
(kN.m)
Shear Force
(kN)
Bending Moment
(kN.m)
Maximum Moment
(kN.m @ m)
Maximum
Deflection
(mm @
m)
x-x y-y x-x y-y x-x y-y
393 289 172.05T 0.00 -150.11 0.00 427.26 0.04 -135.11 42.31
297 190.44T 0.00 77.29 0.00 13.99 -0.01 @ 7.492 @ 7.037

Perimeter column

Lean to rafter

Lean-to columnMember Loading and Member Forces
Loading Combination : 1 UT + 1.2 D1 + 1.2 L1 + 1.2 W1

D1 D 078.500 ( kN/m³)
W1 UDLN +002.550 [ kN/m ]



Member Forces in Load Case 2 and Maximum Deflection from Load Case 7
Mem
ber
No.
Node
End1
End2
Axial
Force
(kN)
Torque
Moment
(kN.m)
Shear Force
(kN)
Bending Moment
(kN.m)
Maximum Moment
(kN.m @ m)
Maximum
Deflection
(mm @
m)
x-x y-y x-x y-y x-x y-y
62 403.07C 0.00 -79.33 0.26 65.42 -0.33 -43.71 -0.86 7.29
272 47.74T 0.00 12.30 0.41 -41.74 0.15 @ 6.075 @ 3.900 @ 2.769

Internal secondary beams

Edge primary beam

Internal primary beams

Typical tank supporting beamMember Loading and Member Forces
Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

D1 UDLY -000.675 ( kN/m )
L1 UDLY -007.500 ( kN/m )
L1 PY1 -030.000 ( kN )
L1 PY1 -030.000 ( kN )
D1 D 078.500 ( kN/m³)



Member Forces in Load Case 1 and Maximum Deflection from Load Case 7
Mem
ber
No.
Node
End1
End2
Axial
Force
(kN)
Torque
Moment
(kN.m)
Shear Force
(kN)
Bending Moment
(kN.m)
Maximum Moment
(kN.m @ m)
Maximum
Deflection
(mm @
m)
x-x y-y x-x y-y x-x y-y
57 6.42T 0.11 148.40 -3.43 -0.27 0.19 307.94 -3.32 9.61
77 5.39C 0.10 -144.90 -3.52 -0.19 -0.20 @ 3.099 @ 4.120 @ 2.750

Internal mezzanine columnMember Loading and Member Forces
Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

D1 D 078.500 ( kN/m³)


Member Forces in Load Case 1 and Maximum Deflection from Load Case 7
Mem
ber
No.
Node
End1
End2
Axial
Force
(kN)
Torque
Moment
(kN.m)
Shear Force
(kN)
Bending Moment
(kN.m)
Maximum Moment
(kN.m @ m)
Maximum
Deflection
(mm @
m)
x-x y-y x-x y-y x-x y-y
670 210 1068.46C 0.00 -5.63 -0.02 21.95 0.09 3.28
315 1064.79C 0.00 -5.63 -0.02 0.00 0.00 @ 1.638

Bending moment diagrams: dead + live +
wind

Shear force diagrams: dead + live + wind

Bending moment Dead + Live

Shear force Dead + live

Design: main Rafter

Continuation: Main rafter

Main perimeter column

Cont’: Main perimeter column

Internal primary beam

Cont’: Internal primary beam

Internal Mezzanine column

Canopy truss: Internal members

Top chord

Bottom chord

Design of RC beam

Design of RC beam

Design of RC beam

Design of RC beam

RC internal column

RC internal column

RC internal column

RC internal column

Eaves haunch connection

Eaves haunch connectionReference Descriptions and calculation Output
Applied Forces at Interface
Right Rafter Forces M, Fvr, Fr 156.5 kNm, 49.9 kN, 97.9 kN
Resultant Forces M, Fv, F 156.5 kNm, 72.5 kN, 82.6 kN
Load directions Top of Joint in Tension, Rafter moving
Down and in Compression.

Basic dimensions
Rafter-356x127UB33 [43] D=409.4, B=178.8, T=14.3, t=8.8, r=10.2,
py=275

Haunch-356x127UB33 [43] D=349.0, B=125.4, T=8.5, t=6.0, r=10.2,
py=275
OK
Bolts 16 mm Ø in 18 mm holes D=349.0, B=125.4, T=8.5, t=6.0, r=10.2,
py=275

Plates S 275, Welds E 35 Grade 8.8 Bolts
Rafter Capacities Mc, Fvc, Fc 403.4 kN.m, 697.0 kN, 1744.3 kN Mc = 403.4
kN.m
OK
Summary of Results (Unity Ratios)
Moment Capacity 164.0 kNm (for 3
rows of bolts) (Modified Applied
Moment Mm=106.4 kNm)
0.65 OK
Moment Capacity 160.0 kNm (for the
2 rows of bolts required in the tension
zone)
0.67 OK
Shear Capacity 0.10 OK
Flange Welds 0.66 0.66 OK
Web Welds 0.43, 0.08 0.43 OK
Haunch Welds 0.94 0.94 OK
End of Haunch Compression Zone 0.10, 0.12 0.12 OK

Beam to beam connection

Beam to beam connectionReference Descriptions and calculation Output
Applied Forces at Interface
Load Combination 1.40 D1 + 1.60 L1
Shear Forces Left = 140.0 kN, Right = 140.0 kN
Tie Force 75.0 k But not less than 100% of the Shear Load.
Design to BS 5950: Pt 1: 2000
Basic dimensions
Left-305x165 UB 40 [43] D=303.4, B=165.0, T=10.2, t=6.0, r=8.9, py=275
Supporting-533x210 UB 82 [43] D=349.0, B=125.4, T=8.5, t=6.0, r=10.2, py=275
Right-305x165 UB 40 [43] D=349.0, B=125.4, T=8.5, t=6.0, r=10.2, py=275
Bolts 20 mm Ø in 22 mm holes Grade 8.8 Bolts
Plates S 275, Welds E 35
Summary of Results (Unity Ratios)
Left Hand Beam
Bolt Shear & Bearing 0.54, 0.41 0.54 OK
Fin-Plate & Web Bearing 0.45, 0.90 0.90 OK
Beam Web Shear 0.52, 0.54, 0.56 0.56 OK
Beam Web Bending 0.47 OK
Fin-Plate Shear 0.30, 0.35, 0.27 0.35 OK
Fin-Plate Bending 0.19, 0 0.19 OK
Tie force Plate T,B, Web T, B 0.21, 0.25, 0.49, 0.63 0.63 OK
Bolt Shear & Bearing 0.54, 0.41 0.54 OK
Bolt Shear & Bearing
Righ Hand Beam
Bolt Shear & Bearing 0.54, 0.41 0.54 OK
Fin-Plate & Web Bearing 0.54, 0.90 0.90 OK
Beam Web Shear 0.52, 0.54, 0.56 0.56 OK
Beam Web Bending 0.47 OK
Fin-Plate Shear 0.36, 0.42, 0.32 0.42 OK
Fin-Plate Bending 0.23, 0 0.23 OK
Tie force Plate T,B, Web T, B 0.25, 0.30, 0.49, 0.63 0.63 OK
Supporting Beam
Combined Web Shear 0.38 OK

Beam to column connection

Beam to column connectionReference Descriptions and calculation Output
Applied Forces at Interface
Load Combination 1.40 D1 + 1.60 L1
Resultant Forces M, Fv, F -88.1 kNm, 388.3 kN, -118.8 kN
Load directions Bottom of Joint in Tension, Rafter moving Down and in
Tension.

Basic dimensions
Column-457x191UB67 [43] D=453.4, B=189.9, T=12.7, t=8.5, r=10.2, py=275
Beam-533x210UB82 [43] D=528.3, B=208.8, T=13.2, t=9.6, r=12.7, py=275
Bolts 20 mm Ø in 22 mm holes Grade 8.8 Bolts
Plates S 275, Welds E 35
Rafter Capacities Mc, Fvc, Fc 566.1 kN.m, 836.8 kN, 2879.0 kN Fvc =
836.8 kN
OK
Summary of Results (Unity Ratios)
Tensile Capacity 0.15
Moment Capacity 249.5 kNm
(for 4 rows of bolts) (Modified
Applied Moment Mm=140.7
kNm)
0.56 OK
Moment Capacity 168.4 kNm
(for the 2 rows of bolts required
in the tension zone)
0.84 OK
Shear Capacity 0.46 OK
Shear Capacity (Fv & T) 0.38 OK
Column Tension Stiffener at
row 0
0.00, 0.29, 0.93, 0.93 0.93 OK
Column Tension Stiffener at
row 2
0.13, 0.60, 0.93, 0.93 0.93 OK
Flange Welds 0.44 0.44 OK
Web Welds 0.57, 0.74 0.74 OK
Column Compression stiff Web
Weld
0.27 0.27 OK

Holding down bolts and base plate

Holding down bolts and base plateReference Descriptions and calculation Output
Applied Forces at Interface
Load Combination 1.40 D1 + 1.60 L1
Resultant Forces M, Fv, F Moment +12.5 kNm, Shear -10.4 kN, Axial
+2903.6 kN

Load directions Forces taken from member end
Design to BS 5950: Pt 1: 2000
Basic dimensions
Column: 457x191UB67 [43] D=457.0, B=190.4, T=14.5, t=9.0, r=10.2,
py=275

Bolts 24 mm Ø in 26 mm holes Grade 4.6 Bolts
Plates Grade 43, Welds E 35
Data grout, Fcu, Fcv, py, slope 25 N/mm², 25 N/mm², 0.35 N/mm², 265
N/mm², 30 deg to vertical

Column Capacities Mc, Fvc, Fc 454.5 kN.m, 678.6 kN, 2602.1 kN Fc =
2602.1 kN
OK
Summary of Results (Unity Ratios)
Concrete Pressure (under Axial only) 0.64 OK
Base-Plate thickness in Compression
(under Axial only)
0.12 OK
Concrete Pressure 0.74 OK
Base-Plate thickness in Compression 0.11 OK
Web in Compression-zone 0.12 0.12 OK
Comp-stiff between Flanges 0.10, 0.13, 0.20, 0.14, 0.41 0.41 OK
Horizontal Shear 0.21 OK
Tags