Introduction to CMOS VLSI Design for Low Power

chencsw1 68 views 24 slides Jul 01, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Design for Low Power


Slide Content

Introduction to
CMOS VLSI
Design
Design for Low Power

CMOS VLSI DesignDesign for Low Power Slide 2
Outline
Power and Energy
Dynamic Power
Static Power
Low Power Design

CMOS VLSI DesignDesign for Low Power Slide 3
Power and Energy
Power is drawn from a voltage source attached to
the V
DDpin(s) of a chip.
Instantaneous Power:
Energy:
Average Power:( ) ( )
DD DD
P t i t V 00
( ) ( )
TT
DD DD
E P t dt i t V dt avg
0
1
()
T
DD DD
E
P i t V dt
TT


CMOS VLSI DesignDesign for Low Power Slide 4
Dynamic Power
Dynamic power is required to charge and discharge
load capacitances when transistors switch.
One cycle involves a rising and falling output.
On rising output, charge Q = CV
DDis required
On falling output, charge is dumped to GND
This repeats Tf
swtimes
over an interval of TC
f
sw
i
DD
(t)
VDD

CMOS VLSI DesignDesign for Low Power Slide 5
Dynamic Power Cont.C
f
sw
i
DD
(t)
VDD dynamic
P 

CMOS VLSI DesignDesign for Low Power Slide 6
Dynamic Power Cont.C
f
sw
i
DD
(t)
VDD  
dynamic
0
0
sw
2
sw
1
()
()
T
DD DD
T
DD
DD
DD
DD
DD
P i t V dt
T
V
i t dt
T
V
Tf CV
T
CV f





CMOS VLSI DesignDesign for Low Power Slide 7
Activity Factor
Suppose the system clock frequency = f
Let f
sw= af, where a= activity factor
–If the signal is a clock, a= 1
–If the signal switches once per cycle, a= ½
–Dynamic gates:
•Switch either 0 or 2 times per cycle, a= ½
–Static gates:
•Depends on design, but typically a= 0.1
Dynamic power:2
dynamic DD
P CV fa

CMOS VLSI DesignDesign for Low Power Slide 8
Short Circuit Current
When transistors switch, both nMOS and pMOS
networks may be momentarily ON at once
Leads to a blip of “short circuit” current.
< 10% of dynamic power if rise/fall times are
comparable for input and output

CMOS VLSI DesignDesign for Low Power Slide 9
Example
200 Mtransistor chip
–20M logic transistors
•Average width: 12 l
–180M memory transistors
•Average width: 4 l
–1.2 V 100 nm process
–C
g= 2 fF/mm

CMOS VLSI DesignDesign for Low Power Slide 10
Dynamic Example
Static CMOS logic gates: activity factor = 0.1
Memory arrays: activity factor = 0.05 (many banks!)
Estimate dynamic power consumption per MHz.
Neglect wire capacitance and short-circuit current.

CMOS VLSI DesignDesign for Low Power Slide 11
Dynamic Example
Static CMOS logic gates: activity factor = 0.1
Memory arrays: activity factor = 0.05 (many banks!)
Estimate dynamic power consumption per MHz.
Neglect wire capacitance.   
   

6
logic
6
mem
2
dynamic logic mem
20 10 12 0.05 / 2 / 24
180 10 4 0.05 / 2 / 72
0.1 0.05 1.2 8.6 mW/MHz
C m fF m nF
C m fF m nF
P C C f
l m l m
l m l m
  
  
  


CMOS VLSI DesignDesign for Low Power Slide 12
Static Power
Static power is consumed even when chip is
quiescent.
–Ratioed circuits burn power in fight between ON
transistors
–Leakage draws power from nominally OFF
devices0
1
gs t ds
TT
VV V
nv v
ds ds
I I e e
 

 
  0t t ds s sb s
V V V V       

CMOS VLSI DesignDesign for Low Power Slide 13
Ratio Example
The chip contains a 32 word x 48 bit ROM
–Uses pseudo-nMOS decoder and bitline pullups
–On average, one wordline and 24 bitlines are high
Find static power drawn by the ROM
–b= 75 mA/V
2
–V
tp= -0.4V

CMOS VLSI DesignDesign for Low Power Slide 14
Ratio Example
The chip contains a 32 word x 48 bit ROM
–Uses pseudo-nMOS decoder and bitline pullups
–On average, one wordline and 24 bitlines are high
Find static power drawn by the ROM
–b= 75 mA/V
2
–V
tp= -0.4V
Solution: 
2
pull-up
pull-up pull-up
static pull-up
24μA
2
29μW
(31 24) 1.6 mW
DD tp
DD
VV
I
P V I
PP
b



  

CMOS VLSI DesignDesign for Low Power Slide 15
Leakage Example
The process has two threshold voltages and two
oxide thicknesses.
Subthreshold leakage:
–20 nA/mm for low V
t
–0.02 nA/mm for high V
t
Gate leakage:
–3 nA/mm for thin oxide
–0.002 nA/mm for thick oxide
Memories use low-leakage transistors everywhere
Gates use low-leakage transistors on 80% of logic

CMOS VLSI DesignDesign for Low Power Slide 16
Leakage Example Cont.
Estimate static power:

CMOS VLSI DesignDesign for Low Power Slide 17
Leakage Example Cont.
Estimate static power:
–High leakage:
–Low leakage:  
66
20 10 0.2 12 0.05 / 2.4 10mml m l m     
  
6
66
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
mm
l m l
l m l m

      
   
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
    

 




CMOS VLSI DesignDesign for Low Power Slide 18
Leakage Example Cont.
Estimate static power:
–High leakage:
–Low leakage:
If no low leakage devices, P
static= 749 mW (!)  
66
20 10 0.2 12 0.05 / 2.4 10mml m l m     
  
6
66
20 10 0.8 12 0.05 /
180 10 4 0.05 / 45.6 10
m
mm
l m l
l m l m

      
   
6
6
2.4 10 20 / / 2 3 /
45.6 10 0.02 / / 2 0.002 /
32
38
static
static static DD
I m nA m nA m
m nA m nA m
mA
P I V mW
m m m
m m m
    

 




CMOS VLSI DesignDesign for Low Power Slide 19
Low Power Design
Reduce dynamic power
–a:
–C:
–V
DD:
–f:
Reduce static power

CMOS VLSI DesignDesign for Low Power Slide 20
Low Power Design
Reduce dynamic power
–a: clock gating, sleep mode
–C:
–V
DD:
–f:
Reduce static power

CMOS VLSI DesignDesign for Low Power Slide 21
Low Power Design
Reduce dynamic power
–a: clock gating, sleep mode
–C: small transistors (esp. on clock), short wires
–V
DD:
–f:
Reduce static power

CMOS VLSI DesignDesign for Low Power Slide 22
Low Power Design
Reduce dynamic power
–a: clock gating, sleep mode
–C: small transistors (esp. on clock), short wires
–V
DD: lowest suitable voltage
–f:
Reduce static power

CMOS VLSI DesignDesign for Low Power Slide 23
Low Power Design
Reduce dynamic power
–a: clock gating, sleep mode
–C: small transistors (esp. on clock), short wires
–V
DD: lowest suitable voltage
–f: lowest suitable frequency
Reduce static power

CMOS VLSI DesignDesign for Low Power Slide 24
Low Power Design
Reduce dynamic power
–a: clock gating, sleep mode
–C: small transistors (esp. on clock), short wires
–V
DD: lowest suitable voltage
–f: lowest suitable frequency
Reduce static power
–Selectively use ratioed circuits
–Selectively use low V
tdevices
–Leakage reduction:
stacked devices, body bias, low temperature