Introduction to reflectance spectroscopy and Spectral geology
conradalderton1
64 views
129 slides
Jul 08, 2024
Slide 1 of 129
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
About This Presentation
Welcome to this presentation on an introduction to reflectance spectroscopy and spectral geology, two critical fields in the study of Earth's surface materials and their properties. Reflectance spectroscopy, a technique that measures the reflection of light or other electromagnetic radiation off...
Welcome to this presentation on an introduction to reflectance spectroscopy and spectral geology, two critical fields in the study of Earth's surface materials and their properties. Reflectance spectroscopy, a technique that measures the reflection of light or other electromagnetic radiation off a surface, provides vital information about the composition, texture, and structure of various materials. By analyzing the spectra—the unique patterns of light absorption and reflection—scientists can identify and quantify the minerals present in rocks, soils, and other geological formations.
Spectral geology leverages this technique to explore and understand the Earth's crust. Through the interpretation of spectral data, geologists can map mineral distributions, assess the quality of mineral deposits, and monitor environmental changes. The integration of reflectance spectroscopy into geological studies has revolutionized the field, offering a non-destructive, efficient, and highly accurate method for examining vast areas of the Earth's surface.
This presentation will delve into the principles of reflectance spectroscopy, exploring how different materials interact with light and how these interactions are captured and analyzed. We will discuss the instrumentation involved, including spectroradiometers and hyperspectral imaging systems, which collect data across a wide range of wavelengths. Additionally, we will explore the processing and interpretation of spectral data, including the use of software tools and algorithms to extract meaningful information.
Furthermore, we will highlight the applications of spectral geology in various domains such as mineral exploration, environmental monitoring, and planetary science. Through case studies and examples, we will demonstrate how spectral data is used to uncover hidden mineral resources, track changes in vegetation and soil composition, and even analyze the surface of other planets.
In essence, this presentation aims to provide a comprehensive overview of reflectance spectroscopy and spectral geology, shedding light on the powerful capabilities of these techniques in advancing our understanding of the Earth's surface and beyond. Whether you are a geologist, an environmental scientist, or simply someone with a keen interest in the natural world, this presentation will equip you with the knowledge to appreciate and leverage the insights gained from spectral analysis.
USGS References
IRON OXIDES
Jarosite
Hematite
GoethiteBest (?) References USGS
Individual Average all ref CSM Average USGS
Hematite 862nm 866
Goethite 920 908
Jarosite 920 and 894 921 915
700nm J < H < G
900nm H < J < G
703
766
745
862
894
920
420
GOETHITE -HEMATITE
Hematite
Goethite
LOW
ALTITUDE
AVIRIS
JAROSITE
DRAGON MINE
LAKE CREEK, CO UNDEVELOPED PORPHYRY COPPER
IRON OXIDE SPECIES
pH 1-4
Colorado
Geological
Survey
RED MOUNTAIN EAST
SOURCE AREAS
RED MOUNTAIN WEST
SPRINGS
UNEXPLOITED
PORPHYRY SYSTEMS
ALTERATION
QSP, QS, PHYLLIC, ADVANCED
ARGILLIC
SULFIDE MINERALIZATION
Cu, Mo vein stockwork
GROUNDWATER
PYRITE SOURCE
SPRING
pH = 2.3-2.8
FERRIHYDRITE
GOETHITE
SCHWERTMANNITE
JAROSITE
pH = 3-6
pH = 4.5->
pH = +7
IRON MINERALS in
NATURAL ACID DRAINAGE
Peek-A-Boo Source
South Fork
LAKE CREEK
pH DISTRIBUTION LAKE CREEK WATERSHED
SOUTH FORK
PEEK A BOOpH Key
2.0-2.99
3.0-3.5
3.51-3.99
4.0 -4.5
4.51-4.99
5.0-5.5
5.51-5.99
6.0-6.5
6.51-6.99
7.0 - 7.5
7.51-7.99
SAYERS GULCH
SAYERS BOWL
STREAM
WR
E
R
NORTH FORK
~50
sites
GOETHITE,Lepidocrocite, Green Rust
MINERAL DISTRIBUTION
FERRIHYDRITES
chwertmannite
Jarosite
JAROSITE
Copiapite
Schwertmannite
MelanteritepH Key
2.0-2.99
3.0-3.5
3.51-3.99
4.0 -4.5
4.51-4.99
5.0-5.5
5.51-5.99
6.0-6.5
6.51-6.99
7.0 - 7.5
7.51-7.99
SCHWERTMANNITE
Ferrihydrite
Jarosite
GREEN RUST
Tschermigite
Jarosite
SCHWERTMANNITE
AlOH
pH vs IRON MINERAL SPECIES
LAKE CREEK
PEEK-A-BOO
SOUTH FORK
pH avg7
pH avg5-6
pH avg 4
pH avg2-3
GOETHITE, Amorphous
FERRIHYDRITE
JAROSITE
MAGHEMITE
pH data 09/02
Red
Mtn
80 SAMPLE SITES
LAA IMAGE GOETHITE
RULE IMAGE SAM <.05-0.25
GOETHITE
LC-9
Lc-9
Buffalo Hills
Alberta
MineralogySamples Plotted Relative to Depth and Mineralogy
Sample IDDepthSapSerCO3ApoGypChlMg
ASHK10 14.65
DDH 14-01 x??
ASHK11 14.65
DDH 19-03 x x
ASHK02 49.15
DDH 4A-02 M tr
ASHK13 58.4Sm ???
DDH 7C-01
ASHK07 59.13
DDH2-01 x ?x
ASHK08 63
DDH 4C-01 x
ASHK04 66.15
DDH 1B-02 x x
ASHK01 76.7
DDH 1A-01 x trx
ASHK 14 76.93
DDH 7B-01 x x
ASHK03 84.23
DDH 5A-02 x
ASHK12 84.93
DDH91-03 x ?
ASHK06 110.15
DD6-02 x
ASHK09 119
DDH 7A-01 x
ASHK05 140.65
DDH 4B-01 x x
SAPONITE
CALCITE
Mg-SILICATES
CHLORITE
SERPENTINE
ZONING WITH DEPTH
NI-LATERITES
Changes in VIS region
Absorption Features can be
used to track Nickel Content
Sample IDASD#NiMaghOlivGoethSerpHemSapCO3Paly
1001 x x
Ferricrete 2002 x x
3003 x x
hematite 4 004 x
5005 x
6, 7007 ? x Mj min
8008 ? x Mj min
saprolite 9009 Mj min
10010 Mj min
11011 Mj min
12012 Mj min
13013tr x x x
14014tr x x x
15015x min Mj
ore 16016x min Mj
17017x x Mj
18018x x Mj
19019x x Mj
20020x ? Mj
ore 1001X X X
2002X X X
3003X X X
4004X X X
veinlets 5006MIX X TR
6007X TR X
magnesite 7009 TR X X ?
Palygorskite 8010 TR x X
silicified 9012 X ? ? ?
10014 X ? X ?
peridotite 11 016 X X
12017 X X X
opal 13018X X X
garnierite 14020X X
15022X ? X TR
veins 16025X X X
peridotite 17026 X X ?
18027 X X
19028 X
20030 X X TR
file nameFeM ix G oeKaolSmecHemNonserpCO3Ni%MgFe% W ave 1 W ave 2 W ave 3 W ave 4
MMH3862
.001752865 trxx .18.5021.5 2203
.002750868 trxx .12.3032.8 2203
.003751878 trxx .09.4041.3 2204
.004760886xxxx .11.3038.6 2204
.005761898xxxx .13.2035.5 2204
.006754889tr xxsm .14.1031.2 2207 2292
.007753886trtrxxtr .12.0521.8 2207 2295
.008749884tr xxx .11.0524.2 2208 2244 2295
.009774907x tr x .12.0520.2 2209 2242 2293
.010775908x tr x .14.1027.0 2210 2243 2292
.011783923sm tr x .14.2026.9 2208 2242 2292
.012794965sm tr x .16.3028.2 2209 2244 2293
.013823960 sh x .34.2050.8 22122250 sh 2294
.014811966 x .36.6039.4 2247 2295
.015828906 ? sm ?.771.926.82209 sh2253 sh 2296
.016802895 ? sm ?1.081.928.22207 sh2251 sh 2295
.017783904 ? x 1.232.428.32208 sh2250 sh 2296
.018780899 x 1.142.824.8 2295
.019779925 x ?1.02.926.5 2252 sh 2294
.020787909 ? x ?2.14.019.0 sh2252 sh 2295 b
.021768948? ? xxx1.874.5916.0 sh2250 sh 2297 2320
.022785916 x 1.554.2413.4 2302 b 2319
.023784943 x? 1.164.1611.4 2295 b
.024781954 x? 1.13.9411.1 2295 B
.025776943 xx 1.035.1911.7 2300 b 2321
.026787930 xx 1.025.312.4 2299 2320
.027789914 trx?.7583.579.7 sh2294 sh 2323
.028802939 trx .7414.949.8 2248 sh sh 2323
.029784938 trx .8287.2810.7 sh 2321
.030789959 xx .68110.19.2 2298 2320
.031798952 trx .786.710.0 2299 sh 2322
.032815934 trx .847.011.8 2247 sh 2322
.033819913 trx .728.710.2 2243 sh2293 sh 2321
.034781931 ? xtr .577.89.12207 sh 2299 b
.035783 ? xtr .647.911.1 sh 2299 b
.036779 xtr .357.04.5 2300 b b
.037784 ?x?.338.43.9 2312 B2312 B
.038793 ?x?.349.34.1 23042316 b
.039796 ?x?.2212.11.9 23022315 b
.040780 ?x?.1810.50.5 23032320 B
.041782 ?x?.218.12.4 2303 b2318 b
.042779 ?x.178.80.4 2304 b b
.043782 ?x.237.82.9 2307 b2319b
.044783 xx.367.78.1 2304 b2323 b
.045796 ?xx.20117.5 2307 b 2318
.046792963 xx.2011.64.6 2304 b2318b
file nameFeM ix G oeKaolSmecHemNonserpCO3Ni%MgFe% W ave 1 W ave 2 W ave 3 W ave 4 KEY: FeMix= uncertain category that mixes an iron oxide and possibly
nickel. Goe= goethite -this is usually a mix of goethite and first hematite at
the top of the hole and then with nickel; Kaol= poorly crystalline kaolinite;
Smec= smectite; Hem= hematite; Ni= nickel as a probable constituent of
nontronite; Non= nontronite; Mag= magnesite; Serp= serpentine; Sil= silica
Saprolite
Cliffs
in
The
Australian
Outback
at
Sunset
December, 2001
SMELTER EMISSIONS MAPPING
Gypsum
Dolomite
CLAY
A
B
C
HOW MANY GEOLOGISTS DOES IT TAKE ……...
FIELD METHODS
Reflectance
measurement with the
ASD HH
Running the ASD
from the Vehicle
Battery
Sample collection at each
point along the grid.
Samples were put into plastic bags
and left at the collection points to
give a visual perspective of the
extent of the grid -notes were taken
Grid outlined
with the sample bags
ASD HH VIS/NIR
Field Spectrometer
JAROSITE
FSP with
SOLAR
ILLUMINATION
OPTION
SPOTTING SCOPE
CALIBRATION
EMPIRICAL
LINE
CALIBRATION
Occidental Lode
Alteration Map
Virginia City
Hyperspectral
SFSI Scanner
Red= illite
Green= Dickite
Blue = alunite
Data Processing By:
Homestake Mining Company
SFSI Images
REMOTE SENSING
Altered Muscovite
2µ
LEACH CAP
MUSCOVITE
SFSI Images
REMOTE SENSING
Altered Muscovite
2µ
LEACH CAP
MUSCOVITE