Inverters_VLSI_Design powerpoint presentation

AhujaAhuja3 606 views 123 slides Mar 05, 2024
Slide 1
Slide 1 of 123
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123

About This Presentation

Inverters in VLSI for Electronics and Communication Engineering.


Slide Content

5 March 2024 VLSI Design 15 March 2024 15 March 2024 1
VLSI Design
Dr. T R Lenka
Asst. Professor
Deptt of Electronics & Comm Engg.
National Institute of Technology Silchar
E-mail: [email protected]
MOS Inverters

Assignment-1
1.ExplaintheoperationprincipleofMOSFETusing
energy band diagrams inaccumulation,
depletion&inversionregions.
2.Derivetheexpressionofthresholdvoltageand
flatbandvoltage.
3.Derivetheexpressionofdraincurrentsinall
regionsofoperation(Cut-off,Linear&
Saturation).
4.Findtheexpressionoftransconductance.
5.DrawtheC~VcharacteristicsofMOSFET.
5 March 2024 VLSI Design 2

5 March 2024 VLSI Design 35 March 2024 3
Chapter Coverage
Static Characteristics
Dynamic Characteristics

5 March 2024 VLSI Design 4
Inverter

5 March 2024 VLSI Design 5
Ideal Voltage Transfer
Characteristic (VTC)

5 March 2024 VLSI Design 6
General Circuit Structure of
an nMOS Inverter

5 March 2024 VLSI Design 7
Voltage Transfer
Characteristic (VTC)

5 March 2024 VLSI Design 8
VTC
•ApplyingKirchhoff’sCurrentLaw
(KCL),theLoadcurrentisalways
equaltothenMOSdraincurrent.
I
D(V
in, V
out)=I
L(V
L)
•Twocriticalvoltagepoints(V
IL,V
IH)
definedonthisVTCcurve,wherethe
slopeoftheV
out(V
in)characteristic
becomesequalto-1.

5 March 2024 VLSI Design 9
Critical Voltages
•V
OH:Maximum outputvoltagewhenthe
outputlevelislogic“1”.
•V
OL:Minimum output voltage when the
output level is logic “0”.
•V
IL:Maximum input voltage which can be
interpreted as logic “0”.
•V
IH:Minimum input voltage which can be
interpreted as logic “1”.
•V
TH:Threshold voltage of inverter, is
defined as the point, where V
in=V
out.

5 March 2024 VLSI Design 10
Noise Immunity and Noise
Margins
•Theabilityofaninvertertointerpret
aninputsignalwithinavoltage
rangeaseitheralogic“0”orasa
logic“1”,allowsdigitalscircuitsto
operatewithacertaintoleranceto
externalsignalperturbations.

5 March 2024 VLSI Design 11
Cascaded Inverters

5 March 2024 VLSI Design 12
Noise Immunity and Noise
Margins

5 March 2024 VLSI Design 13
Noise Margins

5 March 2024 VLSI Design 14
Noise Margins
•Noisetolerancesfordigitalcircuits,
called,NoiseMargin(NM).
•NM
L=V
IL-V
OL :NoiseMarginLow
•NM
H=V
OH-V
IH:NoiseMarginHigh
•Thenoiseimmunityofthecircuit
increaseswithNM

5 March 2024 VLSI Design 15
Resistive Load Inverter

5 March 2024 VLSI Design 16
Resistive Load Inverter
•Calculation of V
OH:
V
out= V
DD–R
L.I
R , where (I
D=I
R)
•WhenV
inislow,i.e.,smallerthanthe
thresholdvoltageofthedriverMOSFET,
thedrivertransistoriscut-off.
•So I
D=I
R=0
•V
OH=V
DD

5 March 2024 VLSI Design 17
Resistive Load Inverter
•Calculation of V
OL:
•I
R= I
DLinear
•(V
DD-V
OUT)/R
L= K
n/2[2(V
DD-V
TO).V
OL-V
OL
2
]

5 March 2024 VLSI Design 18
Resistive Load Inverter
•Calculation of V
IL:
•I
R= I
DSaturation
•(V
DD-V
OUT)/R
L= K
n/2[(V
in-V
TO)
2
]

5 March 2024 VLSI Design 19
Resistive Load Inverter
•Calculation of V
IH:
•I
R=I
DLinear
•(V
DD-V
out)/R
L=K
n/2[(V
in-V
TO).V
out-V
out
2
]
•Differentingbothsidesw.r.tV
inand
substitutingtheslope=-1

5 March 2024 VLSI Design 20
Resistive Load Inverter

5 March 2024 VLSI Design 21
Resistive Load Inverter

5 March 2024 VLSI Design 22
Layout of Resistive Load
Inverter

5 March 2024 VLSI Design 23
Enhancement-nMOS Load
Inverter

5 March 2024 VLSI Design 24
Depletion-nMOS Load
Inverter

5 March 2024 VLSI Design 25
Depletion-nMOS Load Inverter
Calculation of V
OH:
•When V
in is low, i.e., smaller than the
threshold voltage of the driver MOSFET,
the driver transistor is cut-off and does
not conduct any drain current.
•I
D,Driver, Cutoff=I
D,Load, Lin=0 A
•TheLoaddevicewhichoperatesinthe
linearregionalsohaszerodraincurrent.
•So I
D, Load=0 A
•Only valid solution in the linear region is
V
OH=V
DD

5 March 2024 VLSI Design 26
Depletion-nMOS Load Inverter
Calculation of V
OL:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, Driver, Lin=(K
driver/2)[2(V
OH-V
TO).V
OL-V
OL
2
]
•I
D, Load, Sat=(K
Load/2)[-V
T, Load (V
OL)]
2

5 March 2024 VLSI Design 27
Depletion-nMOS Load Inverter
Calculation of V
IL:
•I
D, Driver, Sat= I
D, Load, Lin
•I
D, Driver, Sat=(K
Driver/2)[V
in-V
TO]
2
•I
D, Load, Sat=(K
Load/2){2[V
T, Load (V
out)](V
DD-
V
out)-(V
DD-V
out)
2
}
•Differenting both sides w.r.t V
in and
substituting the slope=-1

5 March 2024 VLSI Design 28
Depletion-nMOS Load Inverter
Calculation of V
IH:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, Driver, Lin=(K
Driver/2)[2(V
in-V
TO) V
out-
V
out
2
]
•I
D, Load, Sat=(K
Load/2)[-V
T, Load (V
out)]
2
•Differenting both sides w.r.t V
in and
substituting the slope=-1

5 March 2024 VLSI Design 29
VTC of a Depletion-Load
Inverter Circuit

5 March 2024 VLSI Design 30
VTC of Depletion-Load
Inverter Circuits

5 March 2024 VLSI Design 31
Layout of Depletion-Load
Inverters

5 March 2024 VLSI Design 32
CMOS Inverter

5 March 2024 VLSI Design 33
VTC of CMOS Inverter

5 March 2024 VLSI Design 34
Region of Operation
Region V
in V
out nMOS pMOS
A <V
T0,n V
OH Cut-Off Linear
B V
IL high≈V
O
H
Saturation Linear
C V
th V
th SaturationSaturation
D V
IH Low≈V
OL LinearSaturation
E >(V
DD+V
T0,p) V
OL Linear Cut-Off

5 March 2024 VLSI Design 35
CMOS Inverter
Calculation of V
OH:
•WhenV
inislow,i.e.,smallerthanthe
thresholdvoltageofthedriverMOSFET,
thedrivertransistoriscut-offanddoes
notconductanydraincurrent.
•I
D,Driver, Cutoff=I
D,Load, Lin=0 A
•TheLoaddevicewhichoperatesinthe
linearregionalsohaszerodraincurrent.
•So I
D, Load=0 A
•Only valid solution in the linear region is
V
OH=V
DD

5 March 2024 VLSI Design 36
CMOS Inverter
Calculation of V
OL:
•I
D, Driver, Lin= I
D, Load, Cut-off
•I
D, Driver, Lin=(K
driver/2)[2(V
DD-V
TO).V
OL-V
OL
2
]
•I
D, Load, Cut-off=0A
•V
OL=0 V

5 March 2024 VLSI Design 37
CMOS Inverter
Calculation of V
IL:
•I
D, nMOS, Sat= I
D, pMOS, Lin
•I
D, nMOS, Sat=(K
n/2)[V
GS,n-V
TO,n]
2
•I
D, pMOS, Lin=(K
P/2)[2(V
GS,p-V
TO,p)V
DS,p-V
DS,p)
2
]
•Differenting both sides w.r.t V
in and
substituting the slope=-1
•V
IL=(2V
out+ V
TO,p-V
DD+ K
R
V
TO,n)/(1+K
R)
•Transconductance Ratio(K
R)
•K
R =K
n/K
P

5 March 2024 VLSI Design 38
CMOS Inverter
Calculation of V
IH:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, nMOS, Lin= (K
n/2)[2(V
GS,n-V
TO,n)V
DS,n-V
DS,n)
2
]
•I
D, pMOS, Sat=(K
p/2)[V
GS,p-V
TO,p]
2
•Differenting both sides w.r.t V
in and
substituting the slope=-1
•V
IH=(V
DD+V
TO,p+K
R (2V
out+V
TO,n))/(1+K
R)
•Transconductance Ratio(K
R)
•K
R =K
n/K
P

5 March 2024 VLSI Design 39
CMOS Inverter
Calculation of V
th:
•I
D, Driver, Sat= I
D, Load, Sat
•I
D, nMOS, Sat= (K
n/2)[2(V
GS,n-V
TO,n)
2
]
•I
D, pMOS, Sat=(K
p/2)[V
GS,p-V
TO,p]
2
•V
th=V
TO,n+K
R
-1/2
(V
DD+V
TO,p)/(1+K
R
-1/2
)
•Transconductance Ratio(K
R)
•K
R=K
n/K
P

5 March 2024 VLSI Design 40
Design of CMOS Inverter

5 March 2024 VLSI Design 41
Design of CMOS Inverter
•CMOS inverterdoesn’tdraw any
significantcurrentfrompowersupply,
exceptforsmallleakageandsub-
thresholdcurrents.
•Thesecurrentsexistwheninputvoltageis
eithersmallerthanV
TO,norlargerthan
(V
DD+V
TO,p)repectively.
•ThenMOSandpMOStransistorsconducta
non-zerocurrent,duringlow-to-highand
high-to-lowtransitions,i.e.inRegionsB,
C,D.

5 March 2024 VLSI Design 42
Design of CMOS Inverter
•Thecurrentdrawnfromthepowersupply
duringtransitionreachesitspeakvalue
whenV
in=V
th.
•Inotherwords,themaximum currentis
drawnwhenbothtransistorsareoperating
insaturationmode.
•VTCofaCMOSinverterandthepower
supplycurrent,asafunctionoftheinput
voltage,isshown.

5 March 2024 VLSI Design 43
VTC & Power Supply Current
of a CMOS Inverter

5 March 2024 VLSI Design 44
•ThethresholdvoltageV
thisidentifiedas
oneofhemostimportantparameterthat
characterizethesteady-stateinput-output
behavioroftheCMOSinvertercircuit.
•TheCMOSinverter,providesafulloutput
voltageswingbetween0andV
DDand
thereforethenoisemargins(NM)are
relativelywider.
•So,theproblemofdesigningaCMOS
invertercanbereducedtosettingthe
inverterthreshold(V
th)toadesired
voltagevalue.
Design of CMOS Inverters

5 March 2024 VLSI Design 45
•Switchingthresholdvoltageofan
idealinverteris,V
th,ideal=V
DD/2.
•TheInverterthresholdvoltageV
th
shiftstolowervalueswithincreasing
K
Rratio.
•ForasymmetricCMOSinverterwith
V
T0,n=V
T0,pandK
R=1.
•V
IL=1/8(3V
DD+2V
T0,n)
•V
IH=1/8(5V
DD-2V
T0,n)
Design of CMOS Inverters

5 March 2024 VLSI Design 46
•ForasymmetricCMOSinverterwith
V
IL+V
IH=V
DD
•ThenoisemarginsNM
LandNM
Hfor
thissymmetricCMOSinverterare
nowcalculatedas:
•NM
L=V
IL-V
OL=V
IL
•NM
H=V
OH-V
IH=V
DD-V
IH
•NM
L=NM
H=V
IL
Design of CMOS Inverters

5 March 2024 VLSI Design 47
Design of CMOS Inverters

5 March 2024 VLSI Design 48
Supply Voltage Scaling in
CMOS Inverters
V
DD
min
=V
T0,n+ V
T0,p

5 March 2024 VLSI Design 49
VTC of CMOS Inverter at
Lower V
DD
min

5 March 2024 VLSI Design 50
Layout of CMOS Inverter

5 March 2024 VLSI Design 51
Design of D-nMOS Load
Inverter

5 March 2024 VLSI Design 52
Layout Design

5 March 2024 VLSI Design 53
Design of E-nMOS Load
Inverter

5 March 2024 VLSI Design 54
Design

5 March 2024 VLSI Design 555 March 2024 555 March 2024 VLSI Design 55
VLSI Design
Switching Characteristics of
MOS Inverters

5 March 2024 VLSI Design 56
Parasitic Capacitances

5 March 2024 VLSI Design 57
Load Capacitance

5 March 2024 VLSI Design 58
Rise Time -Fall Time

5 March 2024 VLSI Design 59
Rise Time -Fall Time

5 March 2024 VLSI Design 60
Charge Up

5 March 2024 VLSI Design 61
Charge Up

5 March 2024 VLSI Design 62
CMOS Inverter

5 March 2024 VLSI Design 63
Layout Design

5 March 2024 VLSI Design 64
Ring Osci

5 March 2024 VLSI Design 65
Output Waveforms

5 March 2024 VLSI Design 66
Interconnect

5 March 2024 VLSI Design 67
Interconnect

5 March 2024 VLSI Design 68
Typical Graph

5 March 2024 VLSI Design 69

5 March 2024 VLSI Design 70
Multi Level Metallization

5 March 2024 VLSI Design 71
Current Density

5 March 2024 VLSI Design 72
Capacitances

5 March 2024 VLSI Design 73
Fringe Capacitance

5 March 2024 VLSI Design 74
Graph

Calculation of Interconnect
Delay
•RC Delay Models
–Aninterconnectlinecanbemodeledas
alumpedRCnetworkifthetimeof
flightacrosstheinterconnectionlineis
significantlyshorterthanthesignal
rise/falltimes.
–Thisisusuallythecaseinmoston-chip
interconnects.
5 March 2024 VLSI Design 75

RC Delay Models
•Assuming thatthecapacitance is
dischargedinitially,andassumingthatthe
inputsignalisarisingsteppulseattimet
=0,theoutputvoltagewaveformofthis
simpleRCcircuitisfoundas
•Therisingoutputvoltagereachesthe
50%-pointatt=T
PLH,thus,wehave
5 March 2024 VLSI Design 76

RC Delay Models
•Thepropagationdelayforthesimple
lumpedRCnetworkisfoundas
•TheaccuracyofthesimplelumpedRC
modelcanbesignificantlyimprovedby
dividingthetotallineresistanceintotwo
equalparts(theT-model)
5 March 2024 VLSI Design 77

RC Delay Models
•Thetransientbehaviorofaninterconnect
linecanbemoreaccuratelyrepresented
usingtheRCladdernetwork,asshown.
•Here,eachRC-segmentconsistsofa
seriesresistance(R/N),andacapacitance
(C/N)connectedbetweenthenodeand
theground.
5 March 2024 VLSI Design 78

RC Delay Models
•Itcanbeexpectedthattheaccuracyof
thismodelincreaseswithincreasingN,
wherethetransientbehaviorapproaches
thatofadistributedRClineforverylarge
valuesofN.
5 March 2024 VLSI Design 79

The Elmore Delay
•Consider a general RC tree network.
–There are no resistor loops in this circuit
–All of the capacitors in an RC tree are
connected between a node and the
ground.
–There is one input node in the circuit.
–There is an unique path resistive path
from the input node to any other node
in the circuit.
5 March 2024 VLSI Design 80

The Elmore Delay
•Assumingthattheinputsignalisastep
pulseattimet=0andtheElmoredelay
atnodeiofthisRCtreeisgivenbythe
followingexpression.
5 March 2024 VLSI Design 81

The Elmore Delay
•the Elmore delay at node 7 can be
found as
•Similarly, the Elmore delay at node 5
can be calculated as
5 March 2024 VLSI Design 82

The Elmore Delay
5 March 2024 VLSI Design 83
•AsaspecialcaseofthegeneralRCtree
network,considernowthesimpleRC
laddernetworkasshown.
•Here,theentirenetworkconsistsofone
singlebranch,andtheElmoredelayfrom
theinputtotheoutput(nodeN)isfound
as:

The Elmore Delay
•IfwefurtherassumeanuniformRCladder
network,consistingofidenticalelements
of(R/N)and(C/N)thentheElmoredelay
fromtheinputtotheoutputnode
becomes:
•ForverylargeN(distributedRCline
behavior),thisdelayexpressionreduces
to:
5 March 2024 VLSI Design 84

The Elmore Delay
•Thus,thepropagationdelayofa
distributedRClineisconsiderablysmaller
thanthatofalumpedRCnetwork.
•Ifthelengthoftheinterconnectionlineis
sufficientlylargeandtherise/falltimesof
thesignalwaveformsarecomparableto
thetimeofflightacrosstheline,thenthe
interconnectlinemustbemodeledasa
transmissionline.
5 March 2024 VLSI Design 85

Switching Power Dissipation of
CMOS Inverters
•Asdiscussedthestaticpower
dissipationoftheCMOSinverteris
quitenegligible.
•The dynamic power consumption of
the CMOS inverter is derived.
5 March 2024 VLSI Design 86

•Duringswitchingeventstheoutput
loadcapacitanceisalternatively
chargedupandchargeddown.
5 March 2024 VLSI Design 87
Dynamic Power Dissipation Analysis

•TheoutputloadcapacitanceC
loadis
beingchargedupthroughthepMOS
transistor;therefore,thecapacitor
currentequalstheinstantaneous
draincurrentofthepMOStransistor.
•Theaveragepowerdissipatedbythe
inverteroveroneperiodcanbe
foundas:
5 March 2024 VLSI Design 88
Dynamic Power Dissipation Analysis

Dynamic Power Dissipation Analysis
•Typicalinputandoutputvoltagewaveforms
andthecapacitorcurrentwaveformduring
switchingoftheCMOSinverter.
5 March 2024 VLSI Design 89

•Sinceduringswitching,thenMOS
transistorandthepMOStransistorina
CMOSinverterconductcurrentforone-
halfperiodeach.
•Theaveragepowerdissipationofthe
CMOSinvertercanbecalculatedasthe
powerrequiredtochargeupandcharge
downtheoutputloadcapacitance.
5 March 2024 VLSI Design 90
Dynamic Power Dissipation Analysis

•Evaluating the integrals, we obtain
•Theaveragepowerdissipationofthe
CMOS inverterisproportionaltothe
switchingfrequency“f”.
5 March 2024 VLSI Design 91
Dynamic Power Dissipation Analysis

Summary
•Therefore,thelow-poweradvantageofCMOS
circuitsbecomeslessprominentinhigh-speed
operation,wheretheswitchingfrequencyis
high.
•Alsonotethattheaveragepowerdissipation
isindependentofalltransistorcharacteristics
andtransistorsizes.
•Consequently,theswitchingdelaytimeshave
norelevancetotheamountofpower
consumptionduringtheswitchingevents.
•switchingpowerissolelydissipatedfor
charginganddischargingtheoutput
capacitancefromV
OLtoV
OH,andviceversa.
5 March 2024 VLSI Design 92

Summary
•Theswitchingpowerexpressionderived
fortheCMOSinverteralsoappliestoall
generalCMOScircuits.
5 March 2024 VLSI Design 93

Power-Delay Product
•Thepower-delayproduct(PDP)isa
fundamentalparameterwhichisoften
usedformeasuringthequalityandthe
performanceofaCMOSprocessandgate
design.
•Asaphysicalquantity,thepower-delay
productcanbeinterpretedasthe
averageenergyrequiredforagateto
switchitsoutputvoltagefromlowtohigh
andfromhightolow.
•Theamountofenergyrequiredtoswitch
theoutput.
5 March 2024 VLSI Design 94

Power-Delay Product
•Fromadesignpoint-of-view,itisdesirable
tominimizethepower-delayproduct.
•SincethePDPisafunctionoftheoutput
loadcapacitanceandthepowersupply
voltage,thedesignershouldtrytokeep
bothC
loadandV
DDassmallaspossible
whendesigningaCMOSlogicgate.
•where istheaverageswitchingpower
dissipationatmaximum operating
frequencyand istheaverage
propagationdelay.
5 March 2024 VLSI Design 95p
 *
avg
p

Power-Delay Product
•Thefactorof2accountsfortwo
transitionsoftheoutput,fromlowtohigh
andfromhightolow.
5 March 2024 VLSI Design 96

5 March 2024 VLSI Design 975 March 2024 975 March 2024 97
VLSI Design
Combinational Logic
Circuits

5 March 2024 VLSI Design 98
Combinational Logic Circuit

5 March 2024 VLSI Design 99
NOR Gate using Depletion
type Load

Critical Voltages
•Calculation of V
OH
–The solution of this equation gives
V
OH= V
DD.
•Calculation of V
OL
–Three cases must be considered
5 March 2024 VLSI Design 100

Critical Voltages
•In case (i), where the driver transistor A is
on, the ratio is
•Incase(ii),wherethedrivertransistorB
ison,theratiois
•TheoutputlowvoltagelevelV
OLinboth
casesisfoundas:
5 March 2024 VLSI Design 101

Critical Voltages
•ifthe(W/L)ratiosofbothdriversare
identical,i.e.,(W/L)
A=(W/L)
Btheoutput
lowvoltage(V
OL)valuescalculatedfor
case(i)andcase(ii)willbeidentical.
•Incase(iii),wherebothdrivertransistors
areturnedon,thesaturatedloadcurrent
isthesumofthetwolinear-modedriver
currents.
5 March 2024 VLSI Design 102

Critical Voltages
•Sincethegatevoltagesofbothdrivertransistors
areequal(V
A=V
B=V
OH),wecandevisean
equivalentdriver-to-loadratiofortheNOR
structure:
•TheNORgatewithbothofitsinputstiedtoa
logic-highvoltageisreplacedwithannMOS
depletion-loadinvertercircuitwiththedriver-to-
loadratio(K
R)havingoutputvoltagelevel:
5 March 2024 VLSI Design 103

5 March 2024 VLSI Design 104
Generalized NOR Structure with
Multiple Inputs

Generalized NOR Structure
•The combined pull-down current can then be
expressed as
•Assumingthattheinputvoltagesofalldriver
transistorsareidenticalandV
GSk=V
GSfor
k=1,2,...,n.Then thepull-down current
expressioncanberewrittenas
5 March 2024 VLSI Design 105

Generalized NOR Structure
•Thus,themultiple-inputNORgatecan
alsobereducedtoanequivalentinverter
forstaticanalysis.The(W/L)ratioofthe
drivertransistorhereis
5 March 2024 VLSI Design 106

5 March 2024 VLSI Design 107
Transient Analysis of NOR Gate

5 March 2024 VLSI Design 108
Two-Input NAND Gate using
Depletion type Load

5 March 2024 VLSI Design 109
NAND Gate using Depletion Load

Two-Input NAND Gate
•Consider the NAND2 gate with both of its
inputs equal to V
OH.
•The drain currents of all transistors in the
circuit are equal to each other.
•Neglecting the substrate-bias effect for
driver transistor A for simplicity, we get
5 March 2024 VLSI Design 110

Two-Input NAND Gate
•The drain-to-source voltages of both
driver transistors can be
•Letthetwodrivertransistorsbeidentical,
i.e.,k
driverA=k
driverB=k
driver
•TheoutputvoltageV
OLisequaltothesum
ofthedrain-to-sourcevoltagesofboth
drivers.
5 March 2024 VLSI Design 111

Two-Input NAND Gate
•Thefollowinganalysisgivesabetterand
moreaccurateviewoftheoperationof
twoseries-connecteddrivertransistors.
•Now consider the two identical
enhancement-typenMOStransistorswith
their-gateterminalsconnectedandV
TA=
V
TB=V
T0.
•SinceI
DA=I
DB,thiscurrentcanalsobe
expressedas
5 March 2024 VLSI Design 112

Two-Input NAND Gate
•Using V
GSA= V
GSB-V
DSB
•Now let V
GS= V
GSBand V
DS= V
DSA+ V
DSB.
The drain-current expression can then be
written as follows.
•Thus,twonMOStransistorsconnectedin
seriesandwiththesamegatevoltage
behavelikeonenMOStransistorwithk
eq
=0.5k
driver.
5 March 2024 VLSI Design 113

Generalized NAND Structure with
Multiple Inputs
•n-series-connected drivertransistors,
assumingthatthethresholdvoltagesofall
transistorsareequaltoV
T0.
•Hence,the(W/L)ratiooftheequivalent
drivertransistoris
5 March 2024 VLSI Design 114

Two-Input NAND Gate
•Iftheseries-connectedtransistorsare
identical,i.e.,(W/L)
1=(W/L)
2=...=
(W/L),thewidth-to-lengthratioofthe
equivalenttransistorbecomes
5 March 2024 VLSI Design 115

5 March 2024 VLSI Design 116
n-input NAND Gate using
Depletion Load

5 March 2024 VLSI Design 117
Transient Analysis of NAND Gate

Transient Analysis of NAND Gate
•Assume,forexample,thattheinputV
Aisequal
toV
OHandtheotherinputV
Bisswitchingfrom
V
OHtoV
OL.Inthiscase,boththeoutputvoltage
V
out,andtheinternalnodevoltageV
xwillrise,
resultingin
•Initsreversecase
5 March 2024 VLSI Design 118

5 March 2024 VLSI Design 119
CMOS Network

5 March 2024 VLSI Design 120
A CMOS NOR Gate with Inverter
Equivalent 
n
p
pTDD
n
p
nT
th
k
k
VV
k
k
V
NORV
4
1
4
)2(
,,



5 March 2024 VLSI Design 121
Dynamic Characteristics of
NOR Gate

5 March 2024 VLSI Design 122
Layout Design of NOR Gate

5 March 2024 VLSI Design 123 
n
p
pTDD
n
p
nT
th
k
k
VV
k
k
V
NANDV
21
2
)2(
,,



A CMOS NAND Gate with Inverter
Equivalent