Inverters in VLSI for Electronics and Communication Engineering.
Size: 3.71 MB
Language: en
Added: Mar 05, 2024
Slides: 123 pages
Slide Content
5 March 2024 VLSI Design 15 March 2024 15 March 2024 1
VLSI Design
Dr. T R Lenka
Asst. Professor
Deptt of Electronics & Comm Engg.
National Institute of Technology Silchar
E-mail: [email protected]
MOS Inverters
Assignment-1
1.ExplaintheoperationprincipleofMOSFETusing
energy band diagrams inaccumulation,
depletion&inversionregions.
2.Derivetheexpressionofthresholdvoltageand
flatbandvoltage.
3.Derivetheexpressionofdraincurrentsinall
regionsofoperation(Cut-off,Linear&
Saturation).
4.Findtheexpressionoftransconductance.
5.DrawtheC~VcharacteristicsofMOSFET.
5 March 2024 VLSI Design 2
5 March 2024 VLSI Design 35 March 2024 3
Chapter Coverage
Static Characteristics
Dynamic Characteristics
5 March 2024 VLSI Design 4
Inverter
5 March 2024 VLSI Design 5
Ideal Voltage Transfer
Characteristic (VTC)
5 March 2024 VLSI Design 6
General Circuit Structure of
an nMOS Inverter
5 March 2024 VLSI Design 7
Voltage Transfer
Characteristic (VTC)
5 March 2024 VLSI Design 8
VTC
•ApplyingKirchhoff’sCurrentLaw
(KCL),theLoadcurrentisalways
equaltothenMOSdraincurrent.
I
D(V
in, V
out)=I
L(V
L)
•Twocriticalvoltagepoints(V
IL,V
IH)
definedonthisVTCcurve,wherethe
slopeoftheV
out(V
in)characteristic
becomesequalto-1.
5 March 2024 VLSI Design 9
Critical Voltages
•V
OH:Maximum outputvoltagewhenthe
outputlevelislogic“1”.
•V
OL:Minimum output voltage when the
output level is logic “0”.
•V
IL:Maximum input voltage which can be
interpreted as logic “0”.
•V
IH:Minimum input voltage which can be
interpreted as logic “1”.
•V
TH:Threshold voltage of inverter, is
defined as the point, where V
in=V
out.
5 March 2024 VLSI Design 10
Noise Immunity and Noise
Margins
•Theabilityofaninvertertointerpret
aninputsignalwithinavoltage
rangeaseitheralogic“0”orasa
logic“1”,allowsdigitalscircuitsto
operatewithacertaintoleranceto
externalsignalperturbations.
5 March 2024 VLSI Design 11
Cascaded Inverters
5 March 2024 VLSI Design 12
Noise Immunity and Noise
Margins
5 March 2024 VLSI Design 15
Resistive Load Inverter
5 March 2024 VLSI Design 16
Resistive Load Inverter
•Calculation of V
OH:
V
out= V
DD–R
L.I
R , where (I
D=I
R)
•WhenV
inislow,i.e.,smallerthanthe
thresholdvoltageofthedriverMOSFET,
thedrivertransistoriscut-off.
•So I
D=I
R=0
•V
OH=V
DD
5 March 2024 VLSI Design 17
Resistive Load Inverter
•Calculation of V
OL:
•I
R= I
DLinear
•(V
DD-V
OUT)/R
L= K
n/2[2(V
DD-V
TO).V
OL-V
OL
2
]
5 March 2024 VLSI Design 18
Resistive Load Inverter
•Calculation of V
IL:
•I
R= I
DSaturation
•(V
DD-V
OUT)/R
L= K
n/2[(V
in-V
TO)
2
]
5 March 2024 VLSI Design 19
Resistive Load Inverter
•Calculation of V
IH:
•I
R=I
DLinear
•(V
DD-V
out)/R
L=K
n/2[(V
in-V
TO).V
out-V
out
2
]
•Differentingbothsidesw.r.tV
inand
substitutingtheslope=-1
5 March 2024 VLSI Design 20
Resistive Load Inverter
5 March 2024 VLSI Design 21
Resistive Load Inverter
5 March 2024 VLSI Design 22
Layout of Resistive Load
Inverter
5 March 2024 VLSI Design 23
Enhancement-nMOS Load
Inverter
5 March 2024 VLSI Design 24
Depletion-nMOS Load
Inverter
5 March 2024 VLSI Design 25
Depletion-nMOS Load Inverter
Calculation of V
OH:
•When V
in is low, i.e., smaller than the
threshold voltage of the driver MOSFET,
the driver transistor is cut-off and does
not conduct any drain current.
•I
D,Driver, Cutoff=I
D,Load, Lin=0 A
•TheLoaddevicewhichoperatesinthe
linearregionalsohaszerodraincurrent.
•So I
D, Load=0 A
•Only valid solution in the linear region is
V
OH=V
DD
5 March 2024 VLSI Design 26
Depletion-nMOS Load Inverter
Calculation of V
OL:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, Driver, Lin=(K
driver/2)[2(V
OH-V
TO).V
OL-V
OL
2
]
•I
D, Load, Sat=(K
Load/2)[-V
T, Load (V
OL)]
2
5 March 2024 VLSI Design 27
Depletion-nMOS Load Inverter
Calculation of V
IL:
•I
D, Driver, Sat= I
D, Load, Lin
•I
D, Driver, Sat=(K
Driver/2)[V
in-V
TO]
2
•I
D, Load, Sat=(K
Load/2){2[V
T, Load (V
out)](V
DD-
V
out)-(V
DD-V
out)
2
}
•Differenting both sides w.r.t V
in and
substituting the slope=-1
5 March 2024 VLSI Design 28
Depletion-nMOS Load Inverter
Calculation of V
IH:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, Driver, Lin=(K
Driver/2)[2(V
in-V
TO) V
out-
V
out
2
]
•I
D, Load, Sat=(K
Load/2)[-V
T, Load (V
out)]
2
•Differenting both sides w.r.t V
in and
substituting the slope=-1
5 March 2024 VLSI Design 29
VTC of a Depletion-Load
Inverter Circuit
5 March 2024 VLSI Design 30
VTC of Depletion-Load
Inverter Circuits
5 March 2024 VLSI Design 31
Layout of Depletion-Load
Inverters
5 March 2024 VLSI Design 32
CMOS Inverter
5 March 2024 VLSI Design 33
VTC of CMOS Inverter
5 March 2024 VLSI Design 34
Region of Operation
Region V
in V
out nMOS pMOS
A <V
T0,n V
OH Cut-Off Linear
B V
IL high≈V
O
H
Saturation Linear
C V
th V
th SaturationSaturation
D V
IH Low≈V
OL LinearSaturation
E >(V
DD+V
T0,p) V
OL Linear Cut-Off
5 March 2024 VLSI Design 35
CMOS Inverter
Calculation of V
OH:
•WhenV
inislow,i.e.,smallerthanthe
thresholdvoltageofthedriverMOSFET,
thedrivertransistoriscut-offanddoes
notconductanydraincurrent.
•I
D,Driver, Cutoff=I
D,Load, Lin=0 A
•TheLoaddevicewhichoperatesinthe
linearregionalsohaszerodraincurrent.
•So I
D, Load=0 A
•Only valid solution in the linear region is
V
OH=V
DD
5 March 2024 VLSI Design 36
CMOS Inverter
Calculation of V
OL:
•I
D, Driver, Lin= I
D, Load, Cut-off
•I
D, Driver, Lin=(K
driver/2)[2(V
DD-V
TO).V
OL-V
OL
2
]
•I
D, Load, Cut-off=0A
•V
OL=0 V
5 March 2024 VLSI Design 37
CMOS Inverter
Calculation of V
IL:
•I
D, nMOS, Sat= I
D, pMOS, Lin
•I
D, nMOS, Sat=(K
n/2)[V
GS,n-V
TO,n]
2
•I
D, pMOS, Lin=(K
P/2)[2(V
GS,p-V
TO,p)V
DS,p-V
DS,p)
2
]
•Differenting both sides w.r.t V
in and
substituting the slope=-1
•V
IL=(2V
out+ V
TO,p-V
DD+ K
R
V
TO,n)/(1+K
R)
•Transconductance Ratio(K
R)
•K
R =K
n/K
P
5 March 2024 VLSI Design 38
CMOS Inverter
Calculation of V
IH:
•I
D, Driver, Lin= I
D, Load, Sat
•I
D, nMOS, Lin= (K
n/2)[2(V
GS,n-V
TO,n)V
DS,n-V
DS,n)
2
]
•I
D, pMOS, Sat=(K
p/2)[V
GS,p-V
TO,p]
2
•Differenting both sides w.r.t V
in and
substituting the slope=-1
•V
IH=(V
DD+V
TO,p+K
R (2V
out+V
TO,n))/(1+K
R)
•Transconductance Ratio(K
R)
•K
R =K
n/K
P
5 March 2024 VLSI Design 39
CMOS Inverter
Calculation of V
th:
•I
D, Driver, Sat= I
D, Load, Sat
•I
D, nMOS, Sat= (K
n/2)[2(V
GS,n-V
TO,n)
2
]
•I
D, pMOS, Sat=(K
p/2)[V
GS,p-V
TO,p]
2
•V
th=V
TO,n+K
R
-1/2
(V
DD+V
TO,p)/(1+K
R
-1/2
)
•Transconductance Ratio(K
R)
•K
R=K
n/K
P
5 March 2024 VLSI Design 40
Design of CMOS Inverter
5 March 2024 VLSI Design 41
Design of CMOS Inverter
•CMOS inverterdoesn’tdraw any
significantcurrentfrompowersupply,
exceptforsmallleakageandsub-
thresholdcurrents.
•Thesecurrentsexistwheninputvoltageis
eithersmallerthanV
TO,norlargerthan
(V
DD+V
TO,p)repectively.
•ThenMOSandpMOStransistorsconducta
non-zerocurrent,duringlow-to-highand
high-to-lowtransitions,i.e.inRegionsB,
C,D.
The Elmore Delay
•Consider a general RC tree network.
–There are no resistor loops in this circuit
–All of the capacitors in an RC tree are
connected between a node and the
ground.
–There is one input node in the circuit.
–There is an unique path resistive path
from the input node to any other node
in the circuit.
5 March 2024 VLSI Design 80
The Elmore Delay
•Assumingthattheinputsignalisastep
pulseattimet=0andtheElmoredelay
atnodeiofthisRCtreeisgivenbythe
followingexpression.
5 March 2024 VLSI Design 81
The Elmore Delay
•the Elmore delay at node 7 can be
found as
•Similarly, the Elmore delay at node 5
can be calculated as
5 March 2024 VLSI Design 82
The Elmore Delay
5 March 2024 VLSI Design 83
•AsaspecialcaseofthegeneralRCtree
network,considernowthesimpleRC
laddernetworkasshown.
•Here,theentirenetworkconsistsofone
singlebranch,andtheElmoredelayfrom
theinputtotheoutput(nodeN)isfound
as:
The Elmore Delay
•IfwefurtherassumeanuniformRCladder
network,consistingofidenticalelements
of(R/N)and(C/N)thentheElmoredelay
fromtheinputtotheoutputnode
becomes:
•ForverylargeN(distributedRCline
behavior),thisdelayexpressionreduces
to:
5 March 2024 VLSI Design 84
The Elmore Delay
•Thus,thepropagationdelayofa
distributedRClineisconsiderablysmaller
thanthatofalumpedRCnetwork.
•Ifthelengthoftheinterconnectionlineis
sufficientlylargeandtherise/falltimesof
thesignalwaveformsarecomparableto
thetimeofflightacrosstheline,thenthe
interconnectlinemustbemodeledasa
transmissionline.
5 March 2024 VLSI Design 85
Switching Power Dissipation of
CMOS Inverters
•Asdiscussedthestaticpower
dissipationoftheCMOSinverteris
quitenegligible.
•The dynamic power consumption of
the CMOS inverter is derived.
5 March 2024 VLSI Design 86
•Duringswitchingeventstheoutput
loadcapacitanceisalternatively
chargedupandchargeddown.
5 March 2024 VLSI Design 87
Dynamic Power Dissipation Analysis
•TheoutputloadcapacitanceC
loadis
beingchargedupthroughthepMOS
transistor;therefore,thecapacitor
currentequalstheinstantaneous
draincurrentofthepMOStransistor.
•Theaveragepowerdissipatedbythe
inverteroveroneperiodcanbe
foundas:
5 March 2024 VLSI Design 88
Dynamic Power Dissipation Analysis
Dynamic Power Dissipation Analysis
•Typicalinputandoutputvoltagewaveforms
andthecapacitorcurrentwaveformduring
switchingoftheCMOSinverter.
5 March 2024 VLSI Design 89
•Sinceduringswitching,thenMOS
transistorandthepMOStransistorina
CMOSinverterconductcurrentforone-
halfperiodeach.
•Theaveragepowerdissipationofthe
CMOSinvertercanbecalculatedasthe
powerrequiredtochargeupandcharge
downtheoutputloadcapacitance.
5 March 2024 VLSI Design 90
Dynamic Power Dissipation Analysis
•Evaluating the integrals, we obtain
•Theaveragepowerdissipationofthe
CMOS inverterisproportionaltothe
switchingfrequency“f”.
5 March 2024 VLSI Design 91
Dynamic Power Dissipation Analysis
5 March 2024 VLSI Design 975 March 2024 975 March 2024 97
VLSI Design
Combinational Logic
Circuits
5 March 2024 VLSI Design 98
Combinational Logic Circuit
5 March 2024 VLSI Design 99
NOR Gate using Depletion
type Load
Critical Voltages
•Calculation of V
OH
–The solution of this equation gives
V
OH= V
DD.
•Calculation of V
OL
–Three cases must be considered
5 March 2024 VLSI Design 100
Critical Voltages
•In case (i), where the driver transistor A is
on, the ratio is
•Incase(ii),wherethedrivertransistorB
ison,theratiois
•TheoutputlowvoltagelevelV
OLinboth
casesisfoundas:
5 March 2024 VLSI Design 101
5 March 2024 VLSI Design 104
Generalized NOR Structure with
Multiple Inputs
Generalized NOR Structure
•The combined pull-down current can then be
expressed as
•Assumingthattheinputvoltagesofalldriver
transistorsareidenticalandV
GSk=V
GSfor
k=1,2,...,n.Then thepull-down current
expressioncanberewrittenas
5 March 2024 VLSI Design 105
Generalized NOR Structure
•Thus,themultiple-inputNORgatecan
alsobereducedtoanequivalentinverter
forstaticanalysis.The(W/L)ratioofthe
drivertransistorhereis
5 March 2024 VLSI Design 106
5 March 2024 VLSI Design 107
Transient Analysis of NOR Gate
5 March 2024 VLSI Design 108
Two-Input NAND Gate using
Depletion type Load
5 March 2024 VLSI Design 109
NAND Gate using Depletion Load
Two-Input NAND Gate
•Consider the NAND2 gate with both of its
inputs equal to V
OH.
•The drain currents of all transistors in the
circuit are equal to each other.
•Neglecting the substrate-bias effect for
driver transistor A for simplicity, we get
5 March 2024 VLSI Design 110
Two-Input NAND Gate
•The drain-to-source voltages of both
driver transistors can be
•Letthetwodrivertransistorsbeidentical,
i.e.,k
driverA=k
driverB=k
driver
•TheoutputvoltageV
OLisequaltothesum
ofthedrain-to-sourcevoltagesofboth
drivers.
5 March 2024 VLSI Design 111
Two-Input NAND Gate
•Thefollowinganalysisgivesabetterand
moreaccurateviewoftheoperationof
twoseries-connecteddrivertransistors.
•Now consider the two identical
enhancement-typenMOStransistorswith
their-gateterminalsconnectedandV
TA=
V
TB=V
T0.
•SinceI
DA=I
DB,thiscurrentcanalsobe
expressedas
5 March 2024 VLSI Design 112
Two-Input NAND Gate
•Using V
GSA= V
GSB-V
DSB
•Now let V
GS= V
GSBand V
DS= V
DSA+ V
DSB.
The drain-current expression can then be
written as follows.
•Thus,twonMOStransistorsconnectedin
seriesandwiththesamegatevoltage
behavelikeonenMOStransistorwithk
eq
=0.5k
driver.
5 March 2024 VLSI Design 113
Generalized NAND Structure with
Multiple Inputs
•n-series-connected drivertransistors,
assumingthatthethresholdvoltagesofall
transistorsareequaltoV
T0.
•Hence,the(W/L)ratiooftheequivalent
drivertransistoris
5 March 2024 VLSI Design 114