JANAKIRAMAN - Research Work.pptJJJJJJJJJ

krishnaamaravadi2003 25 views 48 slides Jun 05, 2024
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

Theory:
Magnetism, Types of magnetic substances, Directions, Magnetic force and field, Right-hand rule, and its application, numerical problems.
Practical:
• Orientation Class and Safety Instructions.
• Magnetic field and magnetic force lines of a bar magnet.
Theory:
Wave motion, types of waves...


Slide Content

RESEARCH STUDY OF SINGLE CYLINDER CI ENGINEPOWERED BY
TERNARY FUEL BLENDS (DIESEL + BIODIESEL + BIO-ETHANOL) WITH
NANOADDITIVES
Dr S.Janakiraman
Department of Mechanical
Engineering, Anna University,
Chennai.
6/5/2024 1

Introduction
6/5/2024 2
•Globalcrucialenergydemandandexpectationforfossilfuelsinthefuturetransportation
•Alternativefuelssuchasfirst,secondandthirdgenerationbiofuels
•AttractionofNon-ediblefuelovertheadvantageofediblefuelsourceswhichcannotaffect
thefoodchain
•Plentyofresearcherstudiesonnon-edibleinunmodifieddieselengines,anditgives
incredibleresultswithlessenedtailpipeemissions.
•ToenhancethebiodieselcombustionpropertiesalcoholswereblendedwithprimaryFuel
(Biodiesel)withnanoadditivesfoundinacurrentresearchstudies

•ToreplacedieselfuelwithNovelGarciniabiodiesel/dieselblendinaproposeddieselengine.
•Toimprovethebiodieselblendcombustion,performanceandemissionscharacteristicsofthe
dieselenginebyaddingthedifferentnanoaddtivesistobeanalysed.
•Furtherinvestigationsofaddingbio-ethanolinabiodieselblend(TernaryFuels)withan
specificnanoadditivesfordifferentdosesistobestudied.
•ArtificalNeuralNetwork(ANN)modellingisusedtodetermineanoptimizedblendof
Ternaryfuelblends(Biodiesel+Bioethanol+Nanoaddtives)bysimulatingtheperformance
andemissionoftheenginewithtesttrainingdata
6/5/2024 3
Objective

Basedontheliteraturereviewenginecharacteristics,itwasfoundthattheusageof
nonedibleseedoilsandbiodieselasfuelblendsinadieselenginecanbeapotential
substituteforutilizationandfueldependencyformineraldieselinfuture.
Incomparisonwithvariousadvantages,therearefewproblemstatementofbiodiesel
fuelledindieselenginessuchashighviscosity,coldflowproperties,minimalheat
content,loweredspraycharacteristicsandpoorstoragestability.
Currently,researchersnoticedthattheinfluenceoftertiarybasedadditivesand
oxygenatedblendedfuelscomposedahigherrangeoffuelconsumptionand
declinedbrakepower.
Research Gap

Toreducethesenegatives,nanoparticleswereconsideredasfuelcatalystandit
hasmanymeritslikehigherenergydensity,enhancedcombustionphenomenon
andreducedenginetailpipeemissions.
Ternaryfuelsblendedwithvariednanoadditivesquantitywhichpossessesthe
novelattemptwiththetestfuelmodificationsindieselengineandcanactasa
potentialkeytoresolvetheresearchgap.
Research Solution

Research Methodology
6/5/2024 6

6/5/2024 7
Garcinia gummi-gutta biodiesel Production
and its immobilisation process

IllustratetheGarciniagummi-guttatree,(A)–habitat,(B)Garcinia
fruit,(C)–inflorescenceinsertion,(D)-maleflowerand
(E)–across-sectionoffruit

Fruit of Garcinia gummi-gutta
Origin:
IsatropicalspeciesofGarcinianativeto
Indonesia.
Common Name:
Garciniacambogia(aformerscientificname),
aswellasbrindleberry,Malabartamarind,
andkudampuli(inKeralaregion).
Family:
TreespeciesofthefamilyClusiaceae.
Colour:
Thisfruitlookslikeasmallpumpkinandis
greentopaleyellowincolour.
Benefits:
Helpspreventfatproduction.
Helpsreduceemotionaleating.
Helpsdecreasebellyfat.
Garcinia gummi-gutta

10
Immobilized lipase enzyme trans-esterification
•NBPGR,Kerela
•2-5 days in Sunlight
•101
o
C for 12 hr
Thermomyces lanuginosus lipase)
4:1 M to 20 :1 M 1% to 6% w/w
74hr reaction rate at 40
o
C

Test fuel properties

Kirloskar AV1 Specification
BrakePower (kW) 5.2
Speed (rpm) 1500
Stroke Length (mm) 110
Bore (mm) 87.5
Numberof Cylinders 1
Numberof Stroke 4
InjectionTiming 23
0
BTDC
Cubic Capacity (litres) 0.661
Compression ratio 16.5:1
6/5/2024 12
Engine Technical Data

6/5/2024 13
Schematic diagram of engine setup

6/5/2024 14
Photographic view of engine setup for
experimental work

Performance characteristics
Brake thermal efficiency
Brake specific energy consumption
Emission
Unburnt Hydro carbon
Carbon monoxide
Oxides of nitrogen
Smoke
Combustion characteristics
Pressure curve
Heat release rate
6/5/2024 15
Result and Discussion -Parameters

Result and Discussion ( Phase 1)
Performance, Combustion Analysis of GGME
Biodiesel with different test fuel blend on
proposed Diesel engine
6/5/2024 16

•B10- Fuel blend of 10% (Garciniabiodiesel) + Diesel
90%.
•B20- Fuel blend of 20% (Garciniabiodiesel) + Diesel
80%.
•B30- Fuel blend of 30% (Garciniabiodiesel) + Diesel
70%.
•B40- Fuel blend of 40% (Garciniabiodiesel) + Diesel
60%.
•B100 - 100% Garciniabiodiesel.
•Diesel- 100% raw diesel.
NOMENCLATURE

BTE JUSTIFICATION
•BTEisinfluencedbythepropertiesCV,O
2
content,CNandviscosity
•Atentireengineloadsdieselengine
exhibitshighestlevelofBTEthanother
blendduetoitshighcalorificvalue
•B10andB20showsbetterBTEcompareto
othersblendsduetobetteratomization,
airfuelinteraction,O
2contentandhigher
fuelvaporizationphase
•higherpercentageofGGMEinDIESELfuel
ledtomarginaldropinthethermal
efficiencyduetohigherviscosityofthe
fuelinfluencedinferiorairentrainment
andfuelspraywhichstronglyaffectedthe
combustionprocessinthetestengine

BSEC JUSTIFICATION
•B10andB20ofGGMEblendsshows
MinimalBSECduetoitsitsproperties
likecalorificvalueandviscositynearer
topetroleum-dieselfuel.
•Also,BSECvaluesofentirefuelblends
weredecreaseduniformlywith
amplifiedinloadconditionsowingto
fuelviscosity,lesserheatingvalueand
highermassflowrateofthetestfuels.
•Notably,at100%loadB100fuelblend
bears22.07%higherfuelconsumption
againstpetroleum-dieselandthismight
betheoccurrenceofhigherBTEand
loweredID.

PRESSURE CURVE JUSTIFICATION
•EntireGGMEblendshowslower
pressurerangethanthatofmineral
dieselfuelandhigherpercentageof
blendresultsinsignificantdropinthe
trend.
•B10(56.98bar)andB20(54.42bar)
blendspossessaloweredrangeof
pressureasrelatedtopetroleum-diesel.
•Amongalltheblends,B100resultsin
lowerpeakpressure,whilehigherpeak
pressureisnoticedformineraldiesel
•Thisis,perhapsduetopoorevaporation
rate,whichistheresultoflowercalorific
value,higherdensityandpoor
atomizationofGGMEblends

HEAT RELEASE RATE JUSTIFICATION
•Thecombustionstarted,theHRRpeak
showspositivevalueandprecedesa
similartrendforDIDieselengine.
•Thiswasinferredbysimultaneous
processofpremixedanddiffusion
combustionphase.
•GGMEblendsshowslowerHRRdueto
minimalcalorificvalue,highercetane
numberandshortenedignitiondelay.
•Duringthediffusionburningphaseof
GGME-DIESELblendsinferredhigherin
rangewithmineraldiesel.
•ThiscouldbeattributedtoexcessO
2
contentfollowedbyincreasedheating
valueinthefuel

Phase 1 Result Summary
Biodiesel –Diesel Blend combustion
•PerformancewisetheGGMEfuelanditsmixturesyieldsloweredBTErangeand
B20shows8.08%dropdowninBTEwithpetroleum-dieselandBSECrateofB20
results11.76%decrementinmineraldieselatfullloadcondition.
•AlltheGGMEanditsmixturesgeneratefalldownCO,UBHCandsmokeemissions
andloweredCOemissionbyhigheroxygennatureandaleanermixtureofGGME
anditsmixtures.
•DropdownUBHCandsmokeemissionswereperceivedbycompletecombustion
owingtomoreO
2ratiosfollowedbyloweredIDperiod.Comparedwith
petroleum-diesel,superiorlevelsofNOxwererecordedforGGMEandits
mixtureswereattainedbyearliercombustionratewithmorein–cylinder
temperature.
•Atendofthissummary,itwasconcludedthatGGMEB20blendconveysthatthe
entirerelevanttrendwasnearertothepetroleum-dieselandthiseventwas
betterandcommercialprogressforunmodifiedDIdieselengine.

23
Result and Discussion ( Phase 2)
Comparativeanalysisofvariousnanoadditiveswith
Garcinia(B20)biodieselfuelblendstestedwiththe
dieselengine

•B20+TiO
2(25ppm) -20% GGME + 80% mineral diesel +
TiO
2 (25ppm)
•B20+CeO
2(25ppm) -20% GGME + 80% mineral diesel +
CeO
2(25ppm)
•B20+ZrO
2(25ppm) -20% GGME + 80% mineral diesel +
ZrO
2 (25ppm)
•B20 -20% GGME + 80% mineral diesel
•B100 -Raw GGME biodiesel
•Diesel -100% raw diesel.
NOMENCLATURE

PRESSURE CURVE JUSTIFICATION
•RelatedtothedieselfuelallNano
additivesblendshows↓InCylPr
•ButB20+TiO
225PPMblendshows
1.76%slightreductionshowsthatthe
additionofnanoparticleswillleadsto
minordecreaseincylinderpressure
duetolesserignitionlagandlower
availabilityofthefuelduringthe
PremixedCombustionPhase(PCP),
rapidevaporationandatomization
•Thehigher-pressurepeakoftheTiO
2
nanoadditiveblendwasnoticedbyits
distinctmaterialpropertieswhich
permitthefueldispersionrangeby
moresurfacetovolumeratioofTiO
2.

HYDRO CARBON JUSTIFICATION
•B20+TiO
2(25ppm)(17.40%)blendattain
strongdecrementinthefueltrendwith
petroleum-diesel.
•ThiseventwascreatedbytheutilityofO
2
withpotentialenergyreleasedbynano-
additives.Integrationofthiseventledto
burningoffthecarbondepositioninthe
cylinderthenitdiminishes.
•Theresidualnon-ioniccompoundswhich
stronglydiminishthefuelquenching
therebyamajordropinfuellossand
facilitatethecombustionsequence.

Carbon monoxide JUSTIFICATION
•Atfullloadconditions,correlatedwith
petroleum-diesel,rawB20blendandnano
additive+B20blendsshowsmajordropin
thevalue.
•Whichwasoccurredbyhighsurfaceto
volumeratioofnanoadditivesenables
morefuelatomization.
•StimulatetheoxidationrateofCOthenit
influencesthecompletecombustionstate
anditformsminimalCOemissionsforall
theloadspectrum.
•Athigherload,B20+TiO
2(25ppm)blend
engenders36.36%loweredCOemission
rangecorrelatedwithpetroleum-diesel
fuelandslightlyloweredwithothernano
additivesblendsthiswasattainedby
setupoxidationnatureofTiO
2
nanoparticles.

Oxides of nitrogenJUSTIFICATION
•Ultimately,B20+TiO
2(25ppm)fuelblend
results(22.57%)deeploweredemission
rangewithB100blends.
•Thiswasoccurredbythepresenceofnano
metaloxidesthatoffershigherO
2vacancies
andgivesextraoxygenconcentrationthat
givesthesootoxidation.
•Also,TiO
2nanoparticlesactasareducing
agentwhichabsorbsO
2molecules.
•Atcombustionstage,uplifttheheat
transferrangewithlow-temperatureratios
followedbythelowerNOxemissions.

Smoke opacity JUSTIFICATION
•Atpeakengineload,allthenanoadditive
blendedfuelresultsloweredemission
levelswithpetroleum-dieselblends
•B20+TiO
2(25ppm)showsthe16.25%low
smokeemissionwithdiesel.
•Duetothenanoadditiveintheblend
whichpromotesfuelevaporationrate,
minimize‘C’elementintheexhaust,air-
fuelmixingratefollowedbysuperior
ignitionquality.
•Meanwhile,activationenergyofferedby
thenanoadditivesledtoeliminatingthe
carboncontentinsidethewallsand
diffusioncombustion.

Phase 2 Results Summary
B20 with Various Nano additives
ThebestB20fuelblendwasmixedwithdistinctnovelnanoadditivesanditwas
relatedwithpetroleum-diesel.
•B20+TiO
2(25ppm)fuelblendproduces6.05%higherBTEwithB20blendandequivalent
rangeofpetroleum-dieselthenthesameblendpossesses10.67%reducedBSECwith
GGMEB20blend.
•Thiscouldbeachievedowingtohigheroxidationcontent,catalystactivityandhigher
surfacetovolumeratioofnano-additives.
•HRRandIn-cylinderpressureofB20+TiO
2(25ppm)fuelblendattainhigherpeakcompared
withB20blendandrelatedrangewithmineraldiesel.Bytheatomicandcubicstructure
deliverthevacancyofO
2andthisnatureofnanoadditivesledtohigherpeakpressureand
HRR.
•Intailpipeemissions,B20+TiO
2(25ppm)fuelblendgotloweredmagnitudeofCO,UBHC,
smokeemissionswithmineraldieselandhighermagnitudeofNOxandCO
2emissions.
FromtheresultB20+TiO
2(25ppm)blendwassuggestedasanintegratedand
economicalfuelfordieselengines.

31
Phase 3
Ternary Fuel –Result and Discussions
Analyse the performance, combustion and pollutant
emissions of different functionalized TiO
2(25 to 55
ppm) nano additives blended with ternary fuel
(Diesel+ Biodiesel+ Bioethanol)

NOMENCLATURE
6/5/2024 32
Fuel
blends
Test fuel blends Details of test fuel blends
Blend 1D100 100% Diesel fuel
Blend 2B20 + BE10 + Diesel70
20% Biodiesel + 10% Bio-ethanol +
70% Diesel fuel
Blend 3B20 + BE10 + Diesel70 + TiO
2(25ppm)
20% Biodiesel + 10% Bio-ethanol +
70% Diesel fuel+ TiO
2(25ppm)
Blend 4B20 + BE10 + Diesel70 + TiO
2(35ppm)
20% Biodiesel + 10% Bio-ethanol +
70% Diesel fuel+ TiO
2(35ppm)
Blend 5B20 + BE10 + Diesel70 + TiO
2(45ppm)
20% Biodiesel + 10% Bio-ethanol +
70% Diesel fuel+ TiO
2(45ppm)
Blend 6B20 + BE10 + Diesel70 + TiO
2(55ppm)
20% Biodiesel + 10% Bio-ethanol
+70% Diesel fuel+ TiO
2(55ppm)

CO JUSTIFICATION
•Owingtothepresenceofbio-ethanolin
testfuelblendresultsinadrastical
decreaseinCOforBlend5andfurther
steppeddowninBlend6incomparison
withBlend1respectively.
•Thistrendwasattainedowingtohigher
O
2suppliedbybiodieselwhich
generatestheleanercombustionrate.
•Also,withtheadditionoftitanium
oxidenanoadditivesandbio-ethanolin
thetestfuel,loweredCOemissions
wereattainedthroughouttheengine
loadcondition.

NO
x JUSTIFICATION
•Atpeakload,Blend4had42.43%
loweredNO
xemissionincomparison
withthatofBlend6.
•Thiscouldbeperhapsattributedtoa
higherquantityofO
2inthefuelblend.
•Itgenerateshigherlatentheatoffuel
blendwhichcouldproducefuel
quenchingandlowercombustion
temperatureprevailsinthecombustion
chamberwhichturnstodeducethe
NO
xemission.

SMOKE JUSTIFICATION
•ComparedwithBlend1,thefuelblends
Blend5(26.90%)andBlend6(34.01%)
hadloweredrangeofsmokeemission
atpeakload.
•Whichisinparwithrecentresearch
findingsanditsjustificationisbythe
presenceofbio-ethanolandbiodiesel.
•Nanoadditiveswillreducethesmoke
emissionsassameastheBTEwas
improvedsignificantlyowingtosupply
ofoxygenatedfueltothefuelblends.

•TheBlend6fuelhad1.2%reducedBTEand2.1%loweredrangeofBSECatpeak
loadwhichhadamarginallyequalrangeofperformancewithBlend1(100%Diesel
fuel).
•Thiscouldbeinferredthatthepresenceofnanoadditivesandbio-ethanolinthe
testfuelblendimprovestheoverallcombustionrate.
•Thein-cylinderpressureofBlend6hadhigherpressurerangewiththerestofthe
fuelblends(expectdieselfuel)atpeakpressurewhichcouldbeowingtothe
presenceofoxygenatedadditives(bio-ethanol)inthefuel.
•ThenforHRRtrend,Blend6hadamarginallyequivalenttrendcomparedwithdiesel
fuelduetoincrementofbio-ethanol,calorificvalue,cetanenumberfollowedbya
bettercombustionrate.
•Inthecaseoftailpipeemissions,HC,CO,andsmokeopacityhadaloweredrangeof
emissionforBlend5andBlend6incomparisonwithmineraldieselfuelatpeak
engineloadconditions.
•Then,NO
xemissionsforBlend5andBlend6hadahigheremissionspectrumat
peakloadincomparisonwithmineraldieselfuel.
6/5/2024 36
Summary of Ternary Fuels

37
ANN Optimisation( Phase 4)
Predictandoptimizetheperformanceandpollutant
emissionsofdifferentfunctionalizedTiO
2nanoadditives
(25to55ppm)blendedwithternaryfuelbyArtificial
neuralnetworktool.

Pictorial representation of ANN architecture

ANN Prediction, Optimization and Simulation of Test Engine
Performance and Emission

SUMMARY OF ANN
Inthisresearchreview,theanticipatedANNmodelwasplacedtoforecastthe
experimentaldataofperformanceandtailpipeemissionsofdifferentfunctionalized
TiO
2nanoadditives(25to55ppm)blendedwithternaryfuel.
•TheANNmodelwassuccessfullypredictedtheinputvaluesofexperimentaldataof
performanceandtailpipeemissionsofdifferentfunctionalizedTiO
2nanoadditives
(25to55ppm)blendedwithternaryfuel.
•Trainednetworkdeterminedthetestingandtrainingdataanditserrorsalso
forecastbythemodellingmethods.
•ThepreferredoutputofthisANNmodel’sresultsexcellenceofmetricswithtarget
leveldataanditsstatisticalerrorwhichisapplicabletothedesignofenginesetup.
Towardtheend,thisANNmodelwassuccessfullyoptimizedandpredicted
theperformanceandtailpipeemissionsofdifferentfunctionalizedTiO
2nanoadditives
(25to55ppm)blendedwithternaryfuelblendsinwellaccuratelevel.

Conclusion
The different methods were used to improve the performance of the Garcinia
gummi-guttabiodiesel and bio-ethanol as a potential alternate fuel for single cylinder diesel
engine performed at 1500 rpm. The prime used methods are:
• Raw Garciniaseed oil and its biodiesel blends
• Blending of Garciniabiodiesel with mineral diesel and its fuel blends were tested with the
diesel engine
• Different nanoadditiveswere blended with Garciniabiodiesel and its fuel blends were tested
with the diesel engine
• Bio-ethanol and nanoadditiveswere blended with Garciniabiodiesel and its fuel blends
were tested with the diesel engine

Conclusion
•The Garciniabiodiesel (B100) shows lowered range
of smoke emission compared with mineral diesel at
peak load condition.
•Then the smoke emission of B20 Garciniafuel blend
was attained by 66.24 HSU which possess higher
compared to Garciniabiodiesel (B100) fuel blend
and higher related with mineral diesel. By the
influence of fuel clog, worn, lag in injection pressure
and timing.
•Moreover, B20 (Garcinia) + TiO2 (25ppm) fuel blend
had 67.44 HSU of smoke emission which is higher
compared with (B100) fuel blend.
•By the presence of nano-additives, bio-ethanol and
bio-diesel the smoke emission of fuel blend had
58.55 HSU which was lowered compared with
(B100) fuel blend due to minimal fuel droplet
formation, better atomization and bio-ethanol will
burn the unburned fuel completely.

ExperimentallyanalysedGGME+Nanoadditivesanditsblendswerepredictedand
simulatedbyproposedANNmodel.TheANNmodelwassuccessfullypredictedandsimulated
theperformanceandtailpipeemissionsofGGME+Nanoadditivesanditsblendsinoptimum
conditions.
•ThetrainedANNnetworkwasefficientlydeterminedthetesting,trainingdataandits
errors.
•ThepreferredoutputofthisANNmodel’sresultsexcellenceofmetricswithtargetlevel
dataanditsstatisticalerrorwhichisapplicabletothedesignofenginesetup.
•Finally,theANNmodelwasusedtovalidatetheexperimentaldataanditserrorsofGGME
anditsblendsinwellaccuratemanner.
•ThemodelproposedthatbothperformanceandtailpipeemissionofGGME+
NanoadditivesanditsblendswasperfectlymatchedwithANNpredictedvaluesthenthe
experimentalvaluesweresimulatedwithANNpredictedvaluesandthusthemodel
approvedtheaccuracylevels.

ThepresentresearchexhibitstheobjectiveanditsresearchworkonGarcinia
gummi-guttamethylesterwithbio-ethanolandnanoaddtivesonDIdieselenginewas
furthermodifiedas:
•InvestigationofGGMEbiodieselblendedwithvariouslowviscousbiofuelsandits
fuellinginDIdieselengines.
•Nano-additivesblendedwithGGMEistobeanalysedwithHCCI–Homogeneous
ChargeCompressionIgnitionenginesandRCCI–ReactivityControlledCompression
Ignitionbasedengines.
•Hybridandbiobasednanoadditivesblendedbiodieselexperimentedwithsome
alteringindieselengineinjectionpressure,combustionbowlandCRDI–Common
RailDirectInjectionsystem.
•Theseenginemodificationyields,enormousprogressinperformance,combustion
andalsostepdownthetailpipeemissions.Analysisofvariouscompressionratio
modificationindieselengineswithnanoadditivesblendedbiodieselfuel.
ENDORSEMENTS FOR FUTURE SCOPE

6/5/2024 47
LIST OF PUBLICATIONS
International Journals
1.Janakiraman,S,Lakshmanan,T,Chandran,V,&Subramani,L,2020,‘Comparative
behaviorofvariousnanoadditivesinaDIESELenginepoweredbynovelGarcinia
gummi-guttabiodiesel’,JournalofCleanerProduction,vol.245,pp.1–15.ISSN:
0959–6526(AnnexureI),ImpactFactor–9.297.
2.Janakiraman,S,Lakshmanan,T(Dr)&Raghu,P2021,‘Experimental
investigativeanalysisofternary(diesel+biodiesel+bio-ethanol)fuelblended
withmetal-dopedtitaniumoxidenanoadditivestestedonadieselengine’
Energy,ISSN:0360-5442,ImpactFactor:7.147.

Thank You
6/5/2024 48
Tags