Kafka vs Spark vs Impala in bigdata .pptx

emmadoo192 22 views 15 slides May 09, 2024
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

In today's data-driven world, organizations are faced with the challenge of efficiently processing and analyzing vast amounts of data to extract valuable insights. Apache Spark has emerged as a powerful tool for processing big data, offering speed, scalability, and ease of use. This project aims...


Slide Content

Done by: Fatima Ali 9203 Zahraa Dokmak 9205 Sara Dokamk 9206 Presented to: Dr. Hussein Hazimeh 2023–2024 Kafka vs Spark vs Impala

The term "Big Data" refers to large
and complex datasets that cannot be easily managed,
processed, or analyzed using traditional data processing tools Big Data poses challenges such
as  volume (the sheer amount of data), velocity (the speed
at which data is generated and processed), variety (the different types of data sources), and  veracity (the reliability and accuracy of the data) Definition of Big Data Challenges of Big Data

Log Aggregation: It can be used
to aggregate log data from
multiple sources for centralized
monitoring and analysis Messaging System
for Microservices: Kafka acts as
a highly scalable
and fault-tolerant messaging
system for communication
between microservices in
a distributed architecture Real-time Data Pipeline: Kafka
is used for collecting, processing,
and delivering real-time data
streams from various sources
such as sensors, applications,
and databases Apache Kafka: Apache Kafka is
an open-source distributed streaming
platform designed for building real-time
data pipelines and streaming applications

Topics: Logical
channels
for organizing
and partitioning data
streams Consumers:
Applications that
subscribe to and
process data from
Kafka topics Producers:
Applications that
publish data to Kafka
topics Brokers: Kafka servers
responsible
for storing
and managing data
partitions Replication and Fault
Tolerance: Kafka
ensures data
durability and fault
tolerance through
data replication
across multiple
brokers 13. Architecture:

Kafka follows a publish-subscribe messaging model where producers
publish messages to topics, and consumers subscribe to topics to receive messages
in real-time LinkedIn utilizes Kafka for real-time activity tracking, monitoring, and data
integration across various services and systems How it Works Case Study

Apache Spark is a fast
and general-purpose cluster computing system
designed for large-scale data processing and analytics Large-scale Data Processing : Spark is used
for processing massive datasets in distributed
environments, enabling tasks like ETL (Extract,
Transform, Load) and batch processing Real-time Stream Processing : Spark Streaming allows for the processing of real-time data streams with
low latency, making it suitable for applications like
real-time analytics and monitoring Machine Learning and Graph Processing: Spark
provides libraries for machine learning ( MLlib )
and graph processing ( GraphX ), enabling advanced
analytics and algorithmic computations Use Cases: Definition and Purpose: Apache Spark:

Architecture: Directed Acyclic Graph
(DAG): Spark uses a DAG
execution engine
for optimizing and scheduling
data processing tasks Resilient Distributed Dataset
(RDD): Spark's fundamental
data abstraction
for distributed processing
and fault tolerance Components: Spark Core,
Spark SQL, Spark Streaming, MLlib , and  GraphX

Spark performs in-memory computation, caching data in memory across multiple nodes for faster data processing and iterative algorithms Netflix utilizes Spark for analyzing user behavior and preferences, powering recommendation systems, and performing real-time analytics on streaming data How it Works Case Study

Apache Impala is
an open-source, high-performance SQL query engine
for processing data stored in Hadoop Distributed File
System (HDFS) and Apache HBase Interactive Analytics : Impala enables interactive
querying and analysis of large datasets stored
in Hadoop, providing low-latency responses to
ad-hoc SQL queries Business Intelligence (BI) Reporting : It can be used
for generating reports, dashboards, and visualizations
using popular BI tools like Tableau and Power BI Ad-hoc Queries on Hadoop Data : Impala allows users
to perform ad-hoc SQL queries on raw or processed
data stored in Hadoop, without requiring data
movement or transformation Use Cases: Definition and Purpose Apache Impala:

Architecture: Massively Parallel Processing (MPP): Impala
employs a distributed and parallel processing
architecture for executing SQL queries across
multiple nodes in a cluster Coordination Layer and Execution Nodes: Impala
includes a coordinator node for query planning
and coordination, and multiple execution nodes
for parallel query execution

Impala executes SQL queries directly on data stored in Hadoop, bypassing the need for intermediate data serialization and deserialization, resulting in low-latency query responses Airbnb utilizes Impala for real-time data exploration and analysis, enabling data scientists and analysts to query and analyze large volumes of data stored in Hadoop for business insights and decision-making How it Works Case Study

Overview: Kafka, Spark, and Impala can be integrated to build end-to-end big data processing pipelines Spark for Data Processing and Analytics:
Spark can consume data from Kafka
topics, perform real-time stream
processing or batch processing, and then
store processed data in Hadoop or other
storage systems Kafka for Real-time Data Ingestion: Kafka
can be used to ingest real-time data
streams from various sources into
a centralized platform for further
processing Impala for Interactive SQL Querying:
Impala can directly query data processed
by Spark, providing users with interactive
SQL querying capabilities for ad-hoc 
analysis and reporting Integration of Kafka, Spark, and Impala:

Scalability : Kafka, Spark, and Impala are designed
for horizontal scalability, allowing them to handle
increasing data volumes by adding more nodes
to the cluster Fault Tolerance : All three technologies provide
fault tolerance mechanisms to ensure data
durability and system reliability in the face
of failures In-memory Processing : Spark leverages
in-memory computation for faster data
processing, while Kafka and Impala also benefit
from distributed in-memory processing
for improved performance Performance and Scalability:

Scalability Challenges : Managing and scaling
large clusters of Kafka, Spark, and Impala can
be complex and resource-intensive Data Consistency and Durability : Ensuring data
consistency and durability, especially
in distributed environments like Kafka, can
be challenging and requires proper configuration
and monitoring Complex Setup and Configuration : Setting up and
configuring Kafka, Spark, and Impala clusters
require expertise and careful consideration
of hardware, software, and network requirements Resource Management and Optimization :
Optimizing resource utilization and performance
tuning in Spark and Impala clusters require
continuous monitoring and adjustment
of configurations Challenges and Limitations:

Monitoring
and Logging: Implement
robust monitoring
and logging solutions
to track cluster
performance, resource
utilization, and system
health Resource Allocation
and Cluster Sizing:
Properly allocate
resources such as CPU,
memory, and storage,
and size clusters
according to workload
requirements
and expected data
volumes Data Partitioning
and Replication:
Use appropriate data
partitioning
and replication
strategies in Kafka
and Spark to ensure
data distribution
and fault tolerance Best Practices: