kalman filter illustrated with 2D example

bavantha101 37 views 22 slides May 06, 2024
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

Simple intro to Kalman Filter, using a simple 2D example.


Slide Content

Using Kalman Filter to
Track Particles
Saša Fratina
advisor:
Samo Korpar
2004-01-13

Overview
Motivation
Basic principles of Kalman Filter
example
Application to particle tracking
No big deal

R. E. Kalman
Born 1930 in Hungary
Studied at MIT / Columbia
Developed filter in 1960/61

i i + 1
Illustration example
Measuring parameters of a particle track in 2D
particle
track
parameters:
y, k
measurement:
m

System:
our
knowledge
of the
system
Kalman filter –KF
System
state:
unknown
system
parameters
model
measurement


noise
noise
?KF
When and where?

When and where?
Tracking and navigation
–Tracking missiles, aircrafts and spacecrafts
–GPS technology
–Visual reality
Tracking in
HEP experiments

KF assumptions
Linear system
–System parameters are linear
function of parameters at
some previous time
–Measurements are linear
function of parameters
White Gaussian noise
–White: uncorrelated in time
–Gaussian: noise amplitude
KF is the
optimal filter

KF description
System:
our
knowledge
of the
system
System
state:
unknown
system
parameters
model
measurement
KF
parameters
v
v
i = A v
i -1
m
i= H v
i


noise
noise
+ q
i
+ r
i
using vectors and matrices
estimation
of
parameters
v
^

KF description: example
System parameters: v
System model:
linear motion y = k x
v
i = A v
i -1
Measurement model:
m
i= H v
i1i
k
y
10
Δx1
i
k
y

























 i
k
y01
i
m














 i
k
y
i
v








Noise
Noise: e
Noise covariance matrix
System noise: v
i = A v
i –1+ q
iQ = E(qq
T
)
Measurement noise: m
i= H v
i + r
i
R = E(rr
T
)












)eE(e)eE(e
)eE(e)eE(e
)E(eeV
2212
2111
T
Gaussian E(e
2
) = σ
2

KF algorithm
Prediction: v
i
-
= A v
i –1
Correction: v
i = v
i
-
+ K (m
i–H v
i
-
)
v
i = A v
i –1 + q
m
i= H v
i + r
v
^
v KF
Kalman gain matrix
minimize the difference v -v
^
^
^ ^ ^
^

Kalman gain matrix
It is easy to show
K = V
-
H
T
(H V
-
H
T
+R)
-1
,
where V
i
-
= AV
i-1A
T
+ Q
Minimize the expected error
Limits:
–system noise << measurement noise v
i = v
i

–system noise >> measurement noise v
i = H
–1
m
i0
K
V
)eE(e)eE(e
)eE(e)eE(e
)E(eeV;vve
ab
ij
2212
2111
T


















^^
^

Error on parameters
Predictor: V
i
-
= AV
i-1A
T
+ Q
–Q: system noise
Corrector: V
i= (I -KH) V
i
-
–error reduced

Kalman filter
Least squares
Example
Simulation
y = k x
Implemented
KF
–prediction
–correction
Compare with
LS method
x
y

System noise
x
y
Kalman filter
Least squares

Matrix description of system state, model
and measurement
Progressive method
Proper dealing with noise
KF overview
prediction
correction

Application to particle tracking
Detector:
–Silicon vertex detector
–Central drift
chamber
Description
of track:
5 parameters

Advantages of using KF
in particle tracking
Progressive method
–No large matrices has to be inverted
Proper dealing with system noise
Track finding and track fitting
Detection of outliers
Merging track from different segments

Modifications of KF
(!) Non -linear
system extended
Kalman filter
Full precision only
after the last step
–Prediction
–Correction
–Smoothing
Kalman filter
Least squares
x
y

Conclusion
We have demonstrated the principles
predictor –corrector method
combining model and measurement
Very useful in tracking
For given assumptions, KF is theoptimal filter
Extensions for non-linear systems
Extensive application
To sum up…

Tracking in BELLE detector
Track finding
Track fitting
Track managing

Notation overview
v: vector of parameters
–v: our estimation
–v
-
: predicted value
m: vector of measurements
A: matrix describing linear system v
i = A v
i –1
H: matrix describing measurements m
i= H v
i
V: error (on parameter) covariance matrix
Q: system noise covariance matrix
R: measurement noise covariance matrix
K: Kalman gain matrix
^