Karnaugh Maps (K-Maps) for Boolean Simplification: A Practical Guide for Digital Electronics
gsvirdi07
15 views
38 slides
Oct 29, 2025
Slide 1 of 38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
About This Presentation
This lecture on Karnaugh Maps (K-Maps) is authored by Dr. G. S. Virdi, Ex-Chief Scientist, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, India. With extensive R&D experience in digital electronics, semiconductor devices design, and fabrication, Dr. Virdi provides a det...
This lecture on Karnaugh Maps (K-Maps) is authored by Dr. G. S. Virdi, Ex-Chief Scientist, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, India. With extensive R&D experience in digital electronics, semiconductor devices design, and fabrication, Dr. Virdi provides a detailed and application-oriented understanding of K-Maps.
K-Maps are an essential tool for simplifying complex Boolean expressions, minimizing logic circuits, and optimizing digital system design. This lecture explains K-Map concepts for 2, 3, 4, and 5 variables, including SOP and POS minimization, adjacency rules, grouping techniques, and handling don’t-care conditions. Practical examples help learners accurately apply K-Maps in combinational logic design.
This lecture is highly beneficial for Engineering and Science students at UG/PG level, academicians, and researchers working in digital logic and VLSI design. It will be uploaded on SlideShare for wider accessibility.
Size: 2.66 MB
Language: en
Added: Oct 29, 2025
Slides: 38 pages
Slide Content
The Karnaugh Map (K-Map)
Dr.G.S.Virdi
Ex.ChiefScientist
CSIR -Central Electronics Engineering Research Institute
Pilani-333031,India
Two-VariableMap
1
0
0 1
x
2
x
1
0
m
0
1
m
1
2
m
2
3
m
3
orderingofvariablesisIMPORTANTforf(x
1,x
2),x
1is
therow,x
2isthecolumn.
Cell0representsx
1’x
2’;Cell1representsx
1’x
2;etc.If
amintermispresentinthefunction,thena1is
placedinthecorrespondingcell.
1
0
10
x
1
x
2
0
m
0
2
m
2
1
m
1
3
m
3
OR
C
AB
00
01
11
10
MappingaStandardSOPExpression
The expression:
ABCABCABCABC
000 001 110 100
0 1
1 1
1
1
ABCDABCDABCDABCDABCDABCDABCD
ABCABCABC
ABCABCABCABC
Practice:
Three-VariableK-Maps
f(0,4)BC f(4,5)AB f(0,1,4,5)B f(0,1,2,3)A
0
1
BC
A
00011110
1000
1000
0
1
BC
A
00011110
0000
1100
0
1
BC
A
00011110
1111
0000
0
1
BC
A
00011110
1100
1100
f(0,4)AC f(4,6)AC f(0,2)AC f(0,2,4,6)C
0
1
BC
A
00011110
0110
0000
0
1
BC
A
00011110
0000
1001
0
1
BC
A
00011110
1001
1001
0
1
BC
A
00011110
1001
0000
Four-VariableK-Maps
f(0,8)BCD
f(5,13)BCD f(13,15)ABD f(4,6)ABD
f(2,3,6,7)AC f(4,6,12,14)BD f(2,3,10,11)BC f(0,2,8,10)BD
CD
00011110
AB
00
01
11
10
1000
0000
0000
1000
CD
00011110
AB
000000
010100
110100
100000
CD
00011110
AB
000000
010000
110110
100000
CD
00011110
AB
00
01
11
10
0000
1001
0000
0000
CD
00011110
AB
000011
010011
110000
100000
CD
00011110
AB
00
01
11
10
0000
1001
1001
0000
CD
00011110
AB
00
01
11
10
0011
0000
0000
0011
CD
00011110
AB
00
01
11
10
1001
0000
0000
1001
Four-VariableK-Maps
CD
00011110
AB
CD
00011110
AB
CD
00011110
000000 000010 00
011111 010010 01
110000 110010 11
100000 100010 10
AB
1010
0101
1010
0101
CD
00011110
AB
00
01
11
10
0101
1010
0101
1010
CD
00011110
AB
000110
010110
110110
100110
CD
00011110
AB
00
01
11
10
1001
1001
1001
1001
CD
00011110
AB
000000
011111
111111
100000
CD
00011110
AB
00
01
11
10
1111
0000
0000
1111
f(4,5,6,7)AB f(3,7,11,15)CD
f(0,3,5,6,9,10,12,15)
fABCD
f(1,2,4,7,8,11,13,14)
fABCD
f(1,3,5,7,9,11,13,15)
fD
f(0,2,4,6,8,10,12,14)
fD
f(4,5,6,7,12,13,14,15)
fB
f(0,1,2,3,8,9,10,11)
fB
DeterminingtheMinimumSOPExpressionfromtheMap
CD
AB
00011110
00 11
011111
111111
10 1
AC
B
ACD
BACACD
DeterminingtheMinimumSOPExpressionfromtheMap
ABBCABC
C
AB
0 1
1
1
1 1
00
01
11
10
0 1
C
AB
00
01
11
10
1 1
1
1
1 1
BACAC
SomeYouGroup,SomeYouDon’t
0
X
1 0
0 0
X 0
CVC
AB
AB
AB
AB
AC
Thisdon’t careconditionwastreatedasa(1).
Thisallowedthegroupingofasingleoneto
becomeagroupingoftwo,resultinginasimpler
term.
Therewasnoadvantageintreatingthis
don’tcareconditionasa(1),thusitwas
treatedasa(0)andnotgrouped.
Example
Solution:
FRTRS
4
R S T U F
4
0 0 0 0 X
0 0 0 1 0
0 0 1 0 1
0 0 1 1 X
0 1 0 0 0
0 1 0 1 X
0 1 1 0 X
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 X
1 1 0 0 X
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
X 0 X 1
0 X 1 X
X 0 0 0
1 1 X 1
RS
RS
RS
RS
V
TUTUTUTU
RT
RS
IMPLEMENTATIONOFK-MAPS
-Insomelogiccircuits,theoutputresponses
forsomeinputconditionsaredon’t care
whethertheyare1or0.
x d 1
InK-maps,don’t-careconditionsarerepresented
byd’sinthecorrespondingcells.
Don’t-careconditionsareusefulinminimizing
thelogicfunctionsusingK-map.
-Canbeconsideredeither1or0
-Thusincreasesthechancesofmergingcellsintothelargercells
-->Reducethenumberofvariablesintheproductterms
yz x’
1dd1
yz’
x
y
z
F
C
0 1
AB
00
01
11
10
MappingaStandardPOSExpression
The expression:
(ABC)(ABC)(ABC)(ABC)
000 010 110 101
0
0
0
0
K-mapSimplificationofPOSExpression
(ABC)(ABC)(ABC)(ABC)(ABC)
0 1
C
AB
00
01
11
10 AB
0 0
0 0
0
AC
BC
A
1
11
A(BC)
ABAC
-Sum-of-IMPLEMENTATIONOFK-MAPS
ProductsForm-
LogicfunctionrepresentedbyaKarnaughmap
canbeimplementedintheformofnot-AND-OR
Acelloracollectionoftheadjacent1-cellscan
berealizedbyanANDgate,withsomeinversion oftheinputvariables.
y
x’
y’
z’
x’
y
z’
x
y
z’
1 1
x 1
z
F(x,y,z)=(0,2,6)
1 1
1
x’
z’
y
z’
x’
y
x
y
z’
x’
y’
z’
F
x
z
y
z
F
notAND OR
z’
-Product-of-IMPLEMENTATIONOFK-MAPS
SumsForm-
LogicfunctionrepresentedbyaKarnaughmap
canbeimplementedintheformofI-OR-AND
Ifweimplement aKarnaughmapusing0-cells,
thecomplement ofF,i.e.,F’,canbeobtained.
Thus,bycomplementingF’usingDeMorgan’s
theoremFcanbeobtained
F(x,y,z)=(0,2,6)
x
y
zx
y’
z
F’=xy’+z
F=(xy’)z’
=(x’+y)z’
x
y
z
F
IOR AND
001 1
0001
Example:Designa3-input(A,B,C)digitalcircuitthatwillgiveatits
output(X)alogic1onlyifthebinarynumberformedattheinputhasmoreones
thanzeros.
XACABBC
A
Inputs
BC
Output
X
0000 0
1001 0
2010 0
3011 1
4100 0
5101 1
6110 1
7111 1
BC
0
1
00011110
A
0010
0111
A B C
X
X(3,5,6,7)
X ACABABC
A B C
X
X(2,3,4,5,6,7,8,9)A
Inputs
BCD
Output
X
00000 0
10001 0
20010 1
30011 1
40100 1
50101 1
60110 1
70111 1
81000 1
91001 1
101010 0
111011 0
121100 0
131101 0
141110 0
151111 0
D
CD
00011110
AB
000011
011111
110000
101100
X
Same
Example:Designa4-input(A,B,C,D)digitalcircuitthatwill
giveatitsoutput(X)alogic1onlyifthebinarynumber
formedattheinputisbetween2and9(including).