kirchoff's rules

RGLuisVincentGonzaga 1,207 views 21 slides Nov 02, 2019
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Calculate the current and voltage through and across circuit elements using Kirchhoff’s loop and junction rules (at most 2 loops only)


Slide Content

KIRCHHOFF’S RULES Prepared by: RG Luis Vincent P. Gonzaga

Objective Calculate the current and voltage through and across circuit elements using Kirchhoff’s loop and junction rules (at most 2 loops only)

Kirchhoff’s first rule— the junction rule . The sum of all currents entering a junction must equal the sum of all currents leaving the junction .

Kirchhoff’s second rule— the loop rule . The algebraic sum of changes in potential around any closed circuit path (loop) must be zero.

A junction in a circuit is a point where three or more conductors meet.

Things to learn

CALCULATING CURRENT: USING KIRCHHOFF’S RULES Consider the figure shown. Find: I 1  =?   I 2   =?   I 3   =?   1 2 3 4 5

Solution We begin by applying Kirchhoff’s first or junction rule at point a . This gives I 1   =  I 2  +  I 3 back

The loop rule The loop rule states that the changes in potential sum to zero . Thus , − I 2 R 2  + emf 1  −  I 2 r 1  −  I 1 R 1  =0 a b b c c d d a − I 2 ( R 2  +  r 1 ) + emf 1  −  I 1 R 1  = 0   explain

Substitute the values for loop abcdea − I 2 ( R 2  +  r 1 ) + emf 1  −  I 1 R 1  = − I 2 (2.5 Ω   +  0.5 Ω ) + 18v   −  I 1   6.0 Ω = −3 I 2   + 18 − 6 I 1   = back

Substitute the values for loop aefgha Now applying the loop rule to aefgha (we could have chosen abcdefgha as well) similarly gives +  I 1 R 1  +  I 3 R 3  +  I 3 r 2  − emf 2  = +  I 1 R 1  +  I 3 ( R 3  +  r 2 ) − emf 2  = Note that the signs are reversed compared with the other loop, because elements are traversed in the opposite direction. With values entered, this becomes +6 I 1  + 2 I 3  − 45 =  back

These three equations are sufficient to solve for the three unknown currents . First, solve the second equation for  I 2 : I 2  = 6 − 2 I 1 Now solve the third equation for  I 3 : I 3  = 22.5 − 3 I 1 Substituting these two new equations into the first one allows us to find a value for  I 1 : I 1  =  I 2  +  I 3   = (6−2 I 1 ) + (22.5− 3 I 1 ) = 28.5 − 5 I 1 . Combining terms gives 6 I 1  = 28.5, and I 1  = 4.75 A

I  2  = 6 − 2 I 1  = 6 − 9.50 I 2  = −3.50 A I  3  = 22.5 − 3 I  1  = 22.5 − 14 . 25 I 3  = 8.25 A

Checking… junction rule I 1  =  I 2  +  I 3 4.75 A= −3.50 A + 8.25 A 4.75 A= 4.75 A

Checking… loop rule in loop abcdea − 3 I 2   + 18 − 6 I 1   = -10.5+18-28.5=0 0=0  

If the formula in computing voltage is, then:  

Thank you..!

Quiz Compute the voltage a.) . Refer to the figure used in discussion and the data obtained in the computation.  

answer
Tags