BIOKIMIA Prof. Sabirin Matsjeh Prof. Prapto Yudono Dr. Ngadiman Dr. Donny Widianto
Jadual & SAP No. Topik Kuliah Tanggal Dosen 1. Pendahuluan : - Konsep dasar biokimia - Reaksi-reaksi biokimia 29-08-2006 Prof. Prapto Yudono 2. Air dan Buffer 05-09-2006 Prof. Sabirin Matsjeh 3. Karbohidrat I - Tinjauan umum - Monosakarida - Disakarida - Polisakarida 12-09-2006 Prof. Prapto Yudono 4. Karbohidrat II - Reaksi monosakarida - Ikatan glikosida - Fungsi karbohidrat 19-09-2006 Prof. Prapto Yudono 5. Asam Amino dan Protein I - Tinjauan umum - Asam Amino - Biosintesis asam amino 26-09-2006 Prof. Sabirin Matsjeh 6. Asam Amino dan Protein II - Peptida - Struktur protein - Fungsi asam amino dan protein - Biosintesis protein 03-10-2006 Prof. Sabirin Matsjeh
Jadual & SAP No. Topik Kuliah Tanggal Dosen 7. Ujian Sisipan Jadual Fak. Topik 1 s/d 6 8. Lipida I - Tinjauan umum - Asam lemak jenuh & tak jenuh - Reaksi asam lemak 07-11-2006 Dr. Ngadiman 9. Lipida II - Fungsi asam lemak dan lipid - Biosintesis asam lemak 14-11-2006 Dr. Ngadiman 10. Asam nukleat I - Tinjauan umum - Nukleosida dan nukleotida 21-11-2006 Dr. Donny Widianto 11. Asam nukleat II - Struktur DNA dan RNA - Informasi genetik 28-11-2006 Dr. Donny Widianto 12. Enzim - Tinjauan umum - Klassifikasi enzim - Koenzim dan kofaktor - Mekanisme dan kinetika kerja enzim - Penghambatan 05-12-2006 Dr. Donny Widianto
Jadual & SAP No. Topik Kuliah Tanggal Dosen 13. Metabolisme I - Tinjauan umum - Jalur metabolisme 12-12-2006 Dr. Ngadiman 14. Metabolisme II - Bioenergetika - Kontrol metabolisme 19-12-2006 Dr. Ngadiman 15. Ujian Akhir Jadual Fak. Topik 8 s/d 14
Buku Acuan Trudy McKee and James McKee. 2003. Biochemistry: The Molecular Basis of Life. Third edition. McGraw-Hill, Boston. Lehninger, Nelson, & Cox. 1997. Principles of Biochemistry.2 nd edition. Worth Publishers. Albert L. Lehninger. 1995. Dasar-dasar Biokimia. (Alih bahasa: Maggy Thenawidjaja). Penerbit Erlangga, Jakarta. David S. Page. 1995. Prinsip-prinsip Biokimia. Penerbit Unair, Surabaya. Soeharsono. 1982. Biokimia I dan II. Gadjah Mada University Press, Yogyakarta.
Penilaian Total Nilai Ujian + Mid + Tugas dari 4 dosen dibagi 4 (Rata-rata dari Nilai Dosen I + II + III + IV) Pengharkatan A : > rata-rata kelas + 1,5 x stdev B : < rata-rata kelas + 1,5 x stdev & > rata-rata kelas + 0,5 x stdev C : < rata-rata kelas + 0,5 x stdev & > rata-rata kelas – 0,5 x stdev D : < rata-rata kelas – 0,5 x stdev & > rata-rata kelas – 1,5 x stdev E : < rata-rata kelas – 1,5 x stdev
Tata Tertib Kuliah Tepat waktu, toleransi maks. 15 menit Tidak Berisik HP tidak diaktifkan Hadir minimal 70% Paham bahasa Indonesia & Inggris Baca salah satu / dua buku acuan Kerjakan Tugas, Mid, & Ujian
Tujuan Perkuliahan Mengenalkan dan memahamkan bahasa biokimia : Kosakata (istilah dan struktur kimia), tatabahasa (reaksi-reaksi kimia), struktur kalimat (Jalur metabolisme) dan arti (keterkaitan metabolik)
What is biochemistry? Definition: Webster’s dictionary: Bios = Greek, meaning “life” “The chemistry of living organisms; the chemistry of the processes incidental to, and characteristic of, life.” WebNet dictionary: “Biochemistry is the organic chemistry of compounds and processes occuring in organisms; the effort to understand biology within the context of chemistry.“
What is biochemistry? Understanding biological forms and functions in chemical terms Biochemistry aims to understand how the lifeless molecules interact to make the complexity and efficiency of the life phenomena and to explain the diverse forms of life in unifying chemical terms.
Issues addressed by biochemistry What are the chemical and three-deminsional structure of biomolecules? How do biomolecules interact with each other? How does the cell synthesize and degrade biomolecules? How is energy conserved and used by the cell? What are the mechanisms for organizing biomolecules and coordinating their activities? How is genetic information stored, transmitted, and expressed?
History of Biochemistry First to reveal the chemical composition of living organisms. The six principle elements for life are: C, H, N, O, P, and S. The biologically most abundant elements are only minor constituents of the earth’s crust (which contains 47% O, 28% Si, 7.9% Al, 4.5% Fe, and 3.5% Ca). 99% of a cell is made of H, O, N, and C Element # unpaired e’s Fractional amount H 1 2/3 O 2 1/4 N 3 1/70 C 4 1/10
Most of the elements in living matter have relatively low atomic numbers; H, O, N and C are the lightest elements capable of forming one, two, three and four bonds, respectively. The lightest elements form the strongest bonds in general.
History of Biochemistry Then to identify the types of molecules found in living organisms. Amino Acids Nucleotides Carbohydrates Lipids
History of Biochemistry Then to understand how the biomolecules make life to be life.
Relationship between Biochemistry and other subjects Organic chemistry , which describes the properties of biomolecules. Biophysics , which applies the techniques of physics to study the structures of biomolecules. Medical research , which increasingly seeks to understand disease states in molecular terms. Nutrition , which has illuminated metabolism by describing the dietary requirements for maintenance of health.
Relationship between Biochemistry and other subjects Microbiology , which has shown that single-celled organisms and viruses are ideally suited for the elucidation of many metabolic pathways and regulatory mechanisms. Physiology , which investigates life processes at the tissue and organism levels. Cell biology , which describes the biochemical division of labor within a cell. Genetics , which describes mechanisms that give a particular cell or organism its biochemical identity.
(1) ENERGY , which it must know how to: Extract Transform Utilize Life needs 3 things:
Life needs 3 things: (2) SIMPLE MOLECULES , which it must know how to: Convert Polymerize Degrade
(3) CHEMICAL MECHANISMS , to: Harness energy Drive sequential chemical reactions Synthesize & degrade macromolecules Maintain a dynamic steady state Self-assemble complex structures Replicate accurately & efficiently Maintain biochemical “order” vs outside
Trick #1: Life uses chemical coupling to drive otherwise unfavorable reactions
Trick #2: Life uses enzymes to speed up otherwise slow reactions
How does an enzyme do it, thermodynamically?
How does an enzyme do it, mechanistically?
The Versatile Carbon Atom is the Backbone of Life
Chemical Isomers Interconversion requires breaking covalent bonds
Biochemical Transformations Fall into Five Main Groups Group transfer reactions Oxidation-reduction reactions Rearrangements (isomerizations) Cleavage reactions Condensation reactions
Biomolecules – Structure Building block Simple sugar Amino acid Nucleotide Fatty acid Macromolecule Polysaccharide Protein (peptide) RNA or DNA Lipid Anabolic Catabolic
Biosynthesis Requires Simple Molecules to Combine Covalently in Many Ways…
1. Relative electronegativities of the two atoms O 3.5 Cl 3.0 N 3.0 C 2.5 P 2.1 H 2.1 Na 0.9 K 0.8 Bond strength includes dependence on High electronegativity = High affinity for electrons
2. The number of bonding electrons
Common Bond Strengths Approx. Avg. Triple: 820 kJ/mole Double: 610 kJ/mole Single: 350 kJ/mole
Common Functional Groups
Important Biological Nucleophiles: Electron-rich functional groups
In summary… Tetrahedral carbon has versatile bonding properties Compounds with many atoms may exist in many isomeric forms Interconversion requires breaking chemical bonds Large molecules are built from small ones by making new chemical bonds