KulBiokim2006B1 hipotesis penelitian .pptx

astuti48 10 views 37 slides Oct 19, 2025
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

hipotesis penelitian hipotesis penelitian hipotesis penelitian


Slide Content

BIOKIMIA Prof. Sabirin Matsjeh Prof. Prapto Yudono Dr. Ngadiman Dr. Donny Widianto

Jadual & SAP No. Topik Kuliah Tanggal Dosen 1. Pendahuluan : - Konsep dasar biokimia - Reaksi-reaksi biokimia 29-08-2006 Prof. Prapto Yudono 2. Air dan Buffer 05-09-2006 Prof. Sabirin Matsjeh 3. Karbohidrat I - Tinjauan umum - Monosakarida - Disakarida - Polisakarida 12-09-2006 Prof. Prapto Yudono 4. Karbohidrat II - Reaksi monosakarida - Ikatan glikosida - Fungsi karbohidrat 19-09-2006 Prof. Prapto Yudono 5. Asam Amino dan Protein I - Tinjauan umum - Asam Amino - Biosintesis asam amino 26-09-2006 Prof. Sabirin Matsjeh 6. Asam Amino dan Protein II - Peptida - Struktur protein - Fungsi asam amino dan protein - Biosintesis protein 03-10-2006 Prof. Sabirin Matsjeh

Jadual & SAP No. Topik Kuliah Tanggal Dosen 7. Ujian Sisipan Jadual Fak. Topik 1 s/d 6 8. Lipida I - Tinjauan umum - Asam lemak jenuh & tak jenuh - Reaksi asam lemak 07-11-2006 Dr. Ngadiman 9. Lipida II - Fungsi asam lemak dan lipid - Biosintesis asam lemak 14-11-2006 Dr. Ngadiman 10. Asam nukleat I - Tinjauan umum - Nukleosida dan nukleotida 21-11-2006 Dr. Donny Widianto 11. Asam nukleat II - Struktur DNA dan RNA - Informasi genetik 28-11-2006 Dr. Donny Widianto 12. Enzim - Tinjauan umum - Klassifikasi enzim - Koenzim dan kofaktor - Mekanisme dan kinetika kerja enzim - Penghambatan 05-12-2006 Dr. Donny Widianto

Jadual & SAP No. Topik Kuliah Tanggal Dosen 13. Metabolisme I - Tinjauan umum - Jalur metabolisme 12-12-2006 Dr. Ngadiman 14. Metabolisme II - Bioenergetika - Kontrol metabolisme 19-12-2006 Dr. Ngadiman 15. Ujian Akhir Jadual Fak. Topik 8 s/d 14

Buku Acuan Trudy McKee and James McKee. 2003. Biochemistry: The Molecular Basis of Life. Third edition. McGraw-Hill, Boston. Lehninger, Nelson, & Cox. 1997. Principles of Biochemistry.2 nd edition. Worth Publishers. Albert L. Lehninger. 1995. Dasar-dasar Biokimia. (Alih bahasa: Maggy Thenawidjaja). Penerbit Erlangga, Jakarta. David S. Page. 1995. Prinsip-prinsip Biokimia. Penerbit Unair, Surabaya. Soeharsono. 1982. Biokimia I dan II. Gadjah Mada University Press, Yogyakarta.

Penilaian Total Nilai Ujian + Mid + Tugas dari 4 dosen dibagi 4 (Rata-rata dari Nilai Dosen I + II + III + IV) Pengharkatan A : > rata-rata kelas + 1,5 x stdev B : < rata-rata kelas + 1,5 x stdev & > rata-rata kelas + 0,5 x stdev C : < rata-rata kelas + 0,5 x stdev & > rata-rata kelas – 0,5 x stdev D : < rata-rata kelas – 0,5 x stdev & > rata-rata kelas – 1,5 x stdev E : < rata-rata kelas – 1,5 x stdev

Tata Tertib Kuliah Tepat waktu, toleransi maks. 15 menit Tidak Berisik HP tidak diaktifkan Hadir minimal 70% Paham bahasa Indonesia & Inggris Baca salah satu / dua buku acuan Kerjakan Tugas, Mid, & Ujian

Tujuan Perkuliahan Mengenalkan dan memahamkan bahasa biokimia : Kosakata (istilah dan struktur kimia), tatabahasa (reaksi-reaksi kimia), struktur kalimat (Jalur metabolisme) dan arti (keterkaitan metabolik)

What is biochemistry? Definition: Webster’s dictionary: Bios = Greek, meaning “life” “The chemistry of living organisms; the chemistry of the processes incidental to, and characteristic of, life.” WebNet dictionary: “Biochemistry is the organic chemistry of compounds and processes occuring in organisms; the effort to understand biology within the context of chemistry.“

What is biochemistry? Understanding biological forms and functions in chemical terms Biochemistry aims to understand how the lifeless molecules interact to make the complexity and efficiency of the life phenomena and to explain the diverse forms of life in unifying chemical terms.

Issues addressed by biochemistry What are the chemical and three-deminsional structure of biomolecules? How do biomolecules interact with each other? How does the cell synthesize and degrade biomolecules? How is energy conserved and used by the cell? What are the mechanisms for organizing biomolecules and coordinating their activities? How is genetic information stored, transmitted, and expressed?

History of Biochemistry First to reveal the chemical composition of living organisms. The six principle elements for life are: C, H, N, O, P, and S. The biologically most abundant elements are only minor constituents of the earth’s crust (which contains 47% O, 28% Si, 7.9% Al, 4.5% Fe, and 3.5% Ca). 99% of a cell is made of H, O, N, and C Element # unpaired e’s Fractional amount H 1 2/3 O 2 1/4 N 3 1/70 C 4 1/10

Most of the elements in living matter have relatively low atomic numbers; H, O, N and C are the lightest elements capable of forming one, two, three and four bonds, respectively. The lightest elements form the strongest bonds in general.

History of Biochemistry Then to identify the types of molecules found in living organisms. Amino Acids Nucleotides Carbohydrates Lipids

History of Biochemistry Then to understand how the biomolecules make life to be life.

Relationship between Biochemistry and other subjects Organic chemistry , which describes the properties of biomolecules. Biophysics , which applies the techniques of physics to study the structures of biomolecules. Medical research , which increasingly seeks to understand disease states in molecular terms. Nutrition , which has illuminated metabolism by describing the dietary requirements for maintenance of health.

Relationship between Biochemistry and other subjects Microbiology , which has shown that single-celled organisms and viruses are ideally suited for the elucidation of many metabolic pathways and regulatory mechanisms. Physiology , which investigates life processes at the tissue and organism levels. Cell biology , which describes the biochemical division of labor within a cell. Genetics , which describes mechanisms that give a particular cell or organism its biochemical identity.

(1) ENERGY , which it must know how to: Extract Transform Utilize Life needs 3 things:

Life needs 3 things: (2) SIMPLE MOLECULES , which it must know how to: Convert Polymerize Degrade

(3) CHEMICAL MECHANISMS , to: Harness energy Drive sequential chemical reactions Synthesize & degrade macromolecules Maintain a dynamic steady state Self-assemble complex structures Replicate accurately & efficiently Maintain biochemical “order” vs outside

Trick #1: Life uses chemical coupling to drive otherwise unfavorable reactions

Trick #2: Life uses enzymes to speed up otherwise slow reactions

How does an enzyme do it, thermodynamically?

How does an enzyme do it, mechanistically?

The Versatile Carbon Atom is the Backbone of Life

Chemical Isomers Interconversion requires breaking covalent bonds

Stereoisomers: Chemically identical Biologically different!

Stereoisomers: Chemically identical Biologically different!

Biochemical Transformations Fall into Five Main Groups Group transfer reactions Oxidation-reduction reactions Rearrangements (isomerizations) Cleavage reactions Condensation reactions

Biomolecules – Structure Building block Simple sugar Amino acid Nucleotide Fatty acid Macromolecule Polysaccharide Protein (peptide) RNA or DNA Lipid Anabolic Catabolic

Biosynthesis Requires Simple Molecules to Combine Covalently in Many Ways…

1. Relative electronegativities of the two atoms O 3.5 Cl 3.0 N 3.0 C 2.5 P 2.1 H 2.1 Na 0.9 K 0.8 Bond strength includes dependence on High electronegativity = High affinity for electrons

2. The number of bonding electrons

Common Bond Strengths Approx. Avg. Triple: 820 kJ/mole Double: 610 kJ/mole Single: 350 kJ/mole

Common Functional Groups

Important Biological Nucleophiles: Electron-rich functional groups

In summary… Tetrahedral carbon has versatile bonding properties Compounds with many atoms may exist in many isomeric forms Interconversion requires breaking chemical bonds Large molecules are built from small ones by making new chemical bonds