L4 - Reducible representations.pdf symmetry And group theory

StywellNgwenya 5 views 29 slides Oct 27, 2025
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Reducible representation is on symmetry and group theory


Slide Content

Symmetry and Group Theory
Reducible representations.

•h: order of the group (number of elements in the group)
•l
i : the dimension of i
th
irrep, (the order of each of the matrices which constitute it)
•R : various operations in the group
•
i(R)
mn : the element of the m
th
row and n
th
column of the matrix corresponding to an operation R in the i
th
irrep
•* : denotes a complex conjugate of 
i(R)
mn, if imaginary or complex numbers are involved.
The great orthogonality theorem (GOT)
Kronecker delta

cd is afunctionof
twovariables, usually just
non-negativeintegers. The
function is 1 if the
variables are equal, and 0
otherwise

ij
i  j (different irreps)

ij = 0 → RHS = 0,
→ vectors
orthogonal
i = j (same irrep)

ij = 1

mm’ 
nn’
m = m’ & n = n’
(same vector)

mm’ = 
nn’ = 1
Note: l > 0, so we can discard the absolute
value sign
Also: mn describes one irrep, therefore 
mm’
& 
nn’ will always return the same value(0,0
or 1,1 but never 1,0 or 0,1)
m  m’ & n  n’

mm’ = 
nn’ = 0 → RHS = 0,
→ vectors orthogonal

4. The sum of the squares of the
characters in any irrep equals h
5. The vectors whose components are the characters of the two different
irreducible representations are orthogonal.
1. In a given representation (reducible or irreducible) the characters of all
matrices belonging to operations in the same class are identical.
2. The number of irreps of a group is equal to the number of classes in the group.
3. The sum of squares of the dimensions (l) of the irreducible
representations of a group is equal to the order of the group (h)
GOT
5 rules
The great orthogonality theorem (GOT)

C
3V E C
3
1
C
3
2

v (1)
v (2)
v (3)
A
1 1 1 1 1 1 1 T
z
A
2 1 1 1 -1 -1 -1 R
z
E 2 -1 -1 0 0 0 (Tx, Ty)
(Rx,Ry)
C
3V E 2C
3 3
v
A
1 1 1 1 T
z
A
2 1 1 -1 R
z
E 2 -1 0 (Tx, Ty)
(Rx,Ry)
Property 1: The characters of each element belonging to the same class in
any irreducible representation are identical to each other
Properties of irreducible representationsc
3g=
Example: C
3v Group

C
3V E 2C
3 3
v
A
1 1 1 1 T
z
A
2 1 1 -1 R
z
E 2 -1 0 (Tx, Ty)
(Rx,Ry)
Property 2: . The number of irreducible representations of a group equals
the number of classes
Properties of irreducible representations
Example: C
3v Group

C
3V E 2C
3 3
v
A
1 1 1 1 T
z
A
2 1 1 -1 R
z
E 2 -1 0 (Tx, Ty)
(Rx,Ry)
Property 3: The sum of the squares of the dimensions of the irreducible
representations of a group equals its order:
Properties of irreducible representations
Example: C
3v Group()
2
2
ii
ii
l Eh= = () () ()
2 2 2
1 2 3
6AE E E  + + =
 2 2 2
1126++=
The order of the group is the
total number of operations
that are in the groupc
c
6hg==

C
3V E 2C
3 3
v
A
1 1 1 1 T
z
A
2 1 1 -1 R
z
E 2 -1 0 (Tx, Ty)
(Rx,Ry)
Property 4: The sum of the squares of the characters of any irreducible
representation of a group equals its order:
Properties of irreducible representations
Example: C
3v Group()
2
c
c
i
gch=
 () () ()
2 2 2
3
2 3 6
v
EC  + + =  
   
22
2
E:221306+−+=

C
3V E 2C
3 3
v
A
1 1 1 1 T
z
A
2 1 1 -1 R
z
E 2 -1 0 (Tx, Ty)
(Rx,Ry)
Property 5: The characters of two different irreducible representations are
orthogonal to each other:
Properties of irreducible representations
Example: C
3v Group()()
c
c
0 when
ij
gcc ij =  ()() ()() ()()
1 1 2 1 3 3 3 1 3
: 2 3 0
vv
AEEE CC  + + =  
   ()() ()() ()()
1
:122113100AE + −+ = 
 

G.O.T consequences
Example: The C
3v Character Table
C
3V E 2C
3 3
v
Γ
1 1 1 1
Γ
2
Γ
3
1. The characters of each element belonging to the same class in any irreducible
representation are identical to each other
2. The number of irreducible representations of a group equals the number of classes
E, C
3, C
3
2
, σ
v1,σ
v2,
σ
v3

G.O.T consequences
C
3V E 2C
3 3
v
Γ
1 1 1 1
Γ
2 1
Γ
3 2
3. The sum of the squares of the dimensions of the irreducible representations of a group
equals its order:()
2
2
ii
ii
l Eh= = () () ()
2 2 2
1 2 3
6E E E   + + =
 2 2 2
1126++=
Example: The C
3v Character Table

G.O.T consequences
C
3V E 2C
3 3
v
Γ
1 1 1 1
Γ
2 1
Γ
3 2 ±1 0
4. The sum of the squares of the characters of any irreducible representation of a group
equals its order: ()
2
i
R
Rh=
 () () ()
2 2 2
3
2 3 6
v
EC  + + =  
   
22
2
3
:221306++=
Example: The C
3v Character Table

G.O.T consequences
C
3V E 2C
3 3
v
Γ
1 1 1 1
Γ
2 1 1 -1
Γ
3 2 -1 0
5. The characters of two different irreducible representations are orthogonal to each
other:()()0 when
ij
R
RR ij =  ()() ()() ()()
13 1 2 1 3 3 3 1 3
: 2 3 0
vv
EE CC   + + =   
   ()() ()() ()()
13
:122113100 + −+ = 
 
Example: The C
3v Character Table

C
3vE 2C
3(z)3
v

1
+1 +1 +1

2
+1 +1 -1

3
+2 -1 0
l
1
2
+ l
2
2
+ l
3
2
= h = 6
# of irreps = equal # of classes
in the group
l
1

= l
2

= 1, l
3

= 2

1 Fully symmetric irrep
Entries under E operation: 1,1,2

2: only 1/-1(half must be
-ve to be orthogonal with 
2 (1
combination possible)

3: we only know the entry under
E(2), so solve equations
Individual irreps (mutually orthogonal)
Check if the vectors are mutually
orthogonal and of equal length
1
2
+ 2(1)
2
+ 3(1)
2
= h = 6
2
2
+ 2(-1)
2
+ 3(0)
2
= h = 6

Mulliken Symbols
C
3V E 2C
3 3
v
Γ
1 1 1 1
Γ
2 1 1 -1
Γ
3 2 -1 0
C
3V E 2C
3 3
v
A
1 1 1 1
A
2 1 1 -1
E 2 -1 0
Example: The C
3v Character Table

C
3V E 2C
3 3
v
A
1 1 1 1
A
2 1 1 -1
E 2 -1 0
E, C
3, C
3
2
, σ
v1,σ
v2,
σ
v3
Linear vectors
z
x
y
z
x
y
z
x
y0
0
z




 0
0
x



 0
0
y





Z – vector x – vector y – vector
Example: The C
3v Character Table

The C
3v Character Table
C
3V E 2C
3 3
v
A
1 1 1 1
A
2 1 1 -1
E 2 -1 0
E, C
3, C
3
2
, σ
v1,σ
v2,
σ
v3
Linear vectorsxx
Ryy
zz


=


 100
010
001
E


=


 1
100
010
001
v



=−


 3
12320
32120
0 01
C
−−

=−


Form representations for the x,y and z vectors
-Generate Γ
xyz
-Block diagonalize to form individual representations

When we take x, y, and
z vectors as a basis for
operations, we can
immediately see if the
resulting 3 by 3
matrices are in the
block diagonal form or
not.
Block diagonal matrix : is a
squarediagonal matrixin which
thediagonalelements are
squarematricesof any size and the
off-diagonalelements are 0.

C
3V E 2C
3 3
v
Linear functions
and rotations
A
1 1 1 1 z
A
2 1 1 -1
E 2 -1 0 (x,y)210E
xy
=−= 1
111A
z
= =

210E
xy
=−= 2
111A
z
= −= C
3VE2C
33
v
Linear functions and rotations
A
111 1 z
A
211-1 R
z
E2-10 (x,y) (R
x,R
y)

Reducible representations
•Point group: C
2V
C
2v example

•Point group: C
2V
Reducible representations
C
2v example

If an operation moves an atom to a symmetry-equivalent position, then all basis vectors to
do with that atom give rise to only off-diagonal elements in the transformation matrix and so
contribute zero to the character for the operation.
Reducible representations
C
2v example

C
2v example
’
v (yz)
v (xz)
C
2OO
OO
OO
= 1
= -1
= 1
Total = 1
xx
yy
zz




→
→−
→
C
2:

v (xz)OO
OO
OO
O
= -1
= 1
= 1
Total = 1
xx
yy
zz




→−
→
→ H1 H1
H1 H1
H1 H1
H1
= -1
= 1
= 1
Total = 1
xx
yy
zz




→−
→
→ H2 H2
H2 H2
H2 H2
H2
= -1
= 1
= 1
Total = 1
xx
yy
zz




→−
→
→
’
v (yz)()3
v
= ()
2
1 =−C ()9E=
Reducible representations911 3
xyz
=−

C
2V E C
2 
v (xz) ’
v (yz)
No. of stationary atoms 3 1 1 3

xyz
3 -1 1 1

3N
9 -1 1 3
C
2v example
’
v (yz)
v (xz)
C
2100
010
001
−− 
 
− =−
 
 
 
xx
yy
zz
C
2:()3=E ()
2
1 =−C ()1=
v ()1=
v
Reducible representations

C
2V E C
2 
v (xz) ’
v (yz)
No. of stationary atoms 3 1 1 3

xyz
3 -1 1 1

3N
9 -1 1 3
’
v (yz)
v (xz)
C
2
Use the following equation to calculate the contribution to the character of the
representation:

xyz = 2cosθ ± 1
θ angle of rotation
+ For proper rotation
-For improper rotation
n
R = No. of unshifted atoms
∴ 
3N = n
R(2cosθ ± 1)
C
2v example

The reduction formula

C
2VEC
2
v (xz)’
v (yz)

3N
9-1 1 3
C
2VEC
2
v (xz)’
v (yz)
A
111 1 1 zx
2
,y
2
,z
2
A
211 -1 -1 R
z xy
B
11-1 1 -1 x, R
y xz
B
21-1 -1 1 y, R
x yz( ) ( ) n
1
order
# of operations in class(character of RR)character of X
X=   ()()()()()()()()()()()()
1
A
3
1
n1 9 1 1 111 1111
4
3= + + + =

− ()()()()()()()()()()()()
1
B
2
1
n1 9 1 1 111 111 1 3
4
= + −+ + −=

− ()()()()()()()()()()()()
2
B
311
1
n1 9 1 11 11 1 1 31
4
= + + + −

− =

− ()()()()()()()()()()()()
2
A
1
1
n 1111 19 1 1 111
4
3= + + + −

− −=

∴ 
3N = 3 A
1 + 1A
2 + 2B
1 + 3B
2
C
2v example
Tags