LATTICE: UNIT 3 complete notes as per AKTU, LUCKNOW
Discrete Structure & Theory of Logic
Size: 19.5 MB
Language: it
Added: Jan 23, 2023
Slides: 24 pages
Slide Content
Lies Late
dgiruren IA pose, io which evey pout £0.63 q
two element of L hos a est upper
bound (LUBY ana a queda lowe boanch
DB tm à Lakes
Zum cunokol by avb and tas Tolo
Gem ounokel by a4b and klos Meet
poseb— Fautially Cuclurol set, wards op the
pueineiple of patettat onduuing lali,
Potet— A Relatron Rs oil do be partral
tel elation when th can sy the
io Hala peau
Pis, GEDIEER
REF Clad), €202),0% BF
2: Anti-sgmmehie - yy R tontairs 01,2)
ab, Cab) alba) then (211) à not allowed.
5: Transihre = iL R tonfains (1,2) 40213)
then Ik should Contern C3) to modes il
Transihre
Ty 0 get A! follows 0 Poutat Ouduirg
Relahor IR Wen tt Klos Poser. THE
olenotd by TASK
Ext For a Ser AZ 80233, Check ij Ihe gellWwwing
velarons Au Pose To
Rie 1011),C212), 038%
Ro = UCI, (212), (3/3), C12)» C4 NF
Rar
L£0 ma Poser, but la Rs coe not
genen lite
A botany crolarol set ct biwally a Lattrce ; bub not
au parttaliy oveteud Ser au dala
El tet Le $1,2,35,303 and R beine relatron
Mg dvsito but, Prove mat 2 u Labio
8 E es CLR) à à PoseT 4
>
every par of elements
op L has an 208 4
3 = a GLB, ira alakre
FR
Hasse dragon
gpaerens Testo ar
{ 3030 % So » 30
Luß o
Hosse drape m A passe diaguam 1 a
geoph! Le testes) 7 0 poser.
"Alto Has ouolmurg craque
Brass ide autor "rare Area
1> Shut at tp ole quapr 4 partted oretus
2> Remove the loop at each enter.
Copa)
S- Remare all eotger that Mint be protect
heras 4 Rares
u Arrange each elas So Mar au arrows
point upwards
Hasse Dragram—=
Maxime! — b, td
Minimal - a
Greatest — Mo qwateat eme
[Onique)
u lest - a longue)
d e
Maximal - de
7 Murimal - a,b
Gialat 7 No graluk elenet
testo _ MO: Onrgur elernedt
a b
d
a a>
b e
e
à
Maximal d
u dl Mund = à
anime mee Great - of
Hatat — lost -
A bm = Lost eme 7
Mend maf - 3h
Maxima! 5
Minimal — A Minimal —2b
Gyrecdet — No Unique Greakat — No Unique
eumet elemen
leak — a Leosl — No unique
elemat-
QE lides Qleroani Of PORET Fiesta
82 Find Meximol, Minimal , greatat and déast
eumet of Pose T5 214,/5,10,12,20,253,/)
SI For Hasse dimgram aaa Ay —selurons
Matimel —12/20,28
Minmel - 25
Greokat - No Unique elem
Least No Unique element
: naw Hasse draquam of the follow
ga > qn y Pe
Exompu 2 Cu)
Sino, SE hos aim
A — least eurent 1, but
Tastatur element aueh exist
i
4
4
» ft
2” |
e le
à
Lakre
D e
= See
a
anb=?
dourt erst
pod €
G
b
am à
ave”,
eve?
Lalo X
LE )
ñ
\ ya / {
N/ o
V
Lohr“ Lolita
19
à
d
b
d
h
4 D
e 5
c
» d
2
(bd) met =
Cha) zen zh
Lab p—
@ |
ae upp et bound ef laNece (Maxon) a) sna labtop,
He mas Aus on eme! ‘a, Such inal Maths
ORI, then Tu Calua upparbound a the tati
2 lou bound x lalre (Minimum) (0) 1- in a tar
such mat Va CL)
YE au ous on etemet 00,
(ORA), men OU talud tour bound of Mr talla
Ip} wi) hi) ry)
e t 4 :
4 2
à ‘ à
PS € o
PA 2 :
, :
a b a I
vr 4
rel lala Gouneal lali 4 -y x
O Mo- 140 eus Ne T-d =! ae
o-a
tompumental Lau + À altre £ ù Said lo he compumentec!
if evoy ¿amar Yo cL musk have ar Kosh on complemen!
Deshi bultile lalira — A latice it Solel to be dishibuive if
o) avtb4t)=(avb)A Cave)
MM ob,c EL.
D anlove) lento viont)
Y (abmest Compleat ) <>
anb=0
<p»
avb=1
E Pa ®
ee see
Paopukes ÓN | Coin v)
D he Telmpoknt law avaz=a
ana za
2) AssouuHte law —
Associate RE = @vbyve= avthve)
Abaca anthre)
3) CormmutaHit law
avb= bva
oAb= bad
d
b ep bubs 108 Chiat) ab
bab= GB (ab) => b
a CTolampoknt law)
“
3
Assewaue ta
O bvéave) = (evd)ve
E E vin = fave
>. a ES
o @ ade = batane)
o ant = bra
a = 4
commulevie lew Fa
i save ‚e
uy bvd A
Bis a OO ae à
Medudau latte A (aie (2,6) U Amd te be A
modulo y it avCbac) =CanbsAc whenewn asc Vabteà
Qu e
Le 4
a
for ony 3 emt yh Bh | pr ony eltmut ance
ov(bno) = Gvbne avccae) =@vone
ova = bac ave = cae
A = a e e
Compu Lake - A Laie à Cal Comput ij cach
Op ik mon- empk Subseñ her a Lost upper bound +
Pa qual owe bouncl
Gaz WE L= {213,63 „Amen Ma lala (41) À Comper
€
1720727
| tres 2
Sa= 813,63
sab-ai@ - Consiam a non-emply subsel Zi op a Latte L,
Then uw called a subte iia of Ly 4) ils À à Lalit,
He. ma opwotico of Li eve ly and a4b6 A who ae,
ca sol) 9E12:3,5,5, 10,15, 309 = 055
j 1. 81/2, 6) 0G 5: 211236303 mn
2°45 ,15 305 6: E13,c, 303
B $US 10, Boy E 1° fr
Y 2,6, 107303 à y
AS orp hon — i
Boolean
gebiet
Boolean algebra wat invenled by George Book in 1854.
Boolean algebra D wid to analyze 4 sept Simpli[y te
cbr gilt Cog) circule I WU only ine binary numbat
Ne Lente sta abo call a Binary algebra
AND + oR + not AA
aA} B&B A E f
0
ele ie 10
i 0
1 1
o
1
Laws in Boolean Algebra y
p Coninutedee Tae Ar
BA 5 A+B= 840
2: Assouahve la - (AB).c= AB.
(0+0)+c= A+B tC)
Dikbibate law - Arate)= ABTA
A+B O= (A+B CAFO
us Absmphon law - n+(A:6)= A
PCA +8) =a
s- demargens law - cam)! = Axe!
PERRIER 1
(era! = Ale
6: Twin law y (goypubealatwe) (AN! A
Tomaten Lau Inyoluuhen! at
Fo Tdempokntiay - Ara=A, ARA
$ Complement Jaw — Am!
AA
BNP Gals IR Gates Nol Gala
DS Don ni
NS
Sum ep Puodudi1 Tha jormed by adeting COR operation)
A Thue Produch Heim or alto
Call oS ‘make Mun toma eu wepreinkd Lin Um,
they aur me produc (AWD opmaken) of baleen Variables
Shen in normal form oy Compumankd form
Dfin Sor= 2m(0,3)
fu somq muntomo 4 munlnms
Aso, A=0,c=0 Minka Ai Bc!
ei Minka ABLE
asl, 6=0,
sop= ALA, + ABS
D x(s0p)= Eml! 316) cil
= = Pe ow Al -0
Pool ster sito o liga
nee me'c Anc
X(SoP)= Al ale + ABC ABC!
x
Puodud of Suma r FE à fermud by mn plying (And
operators > m Sum toma. Tht Sum toma ou abo
call as fauytounma! » Mar-lams are epotrrdo win
IM! may oma Mu Sum COR opeushon) of Booka Vamaëls
esten in normal fern or Compu em
INTRANET
x lo \ oil és) e ao| 0 [tale
wife [s[+]8 aller $
ES uf [es beler
2-3 ME
AS
o
& N lacy + A'Bcd' + Ach
E plein! a TA + AlactS +ABcd ABC)
ages +06 !cb ae ol tl to
08
nico 16
Fe Aa ab ABD u
10 CB ABD
fe (P/O, 8S) =Em( 0,25 Ti 9,1) ¥4(3,8, 102,44)
eS, 1
pa \og ol 1] RP lol
so = 3 ot
ol ly p'as
Uy [ie |:
= gl Pas+Pal
vr Pa! oes
Supe j
Neo Nee a AB AR,
5 A RE a o
Vale E D) th,
E,
> 2 2lo,1/23,4114) A
Fe Alege!