Laws of exponents

10,156 views 20 slides Jan 08, 2022
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

This aim to explain about different rules of exponents


Slide Content

Learning Targets:
•I can define exponent;
•I can do laws of exponents; and
•I can determined different
kinds of laws of exponents.

Exponents
3
5
Power
base
exponent33
means that is the exponential
form of t
Example:
he number
125 5 5
.125

5
3
means 3 factors of 5 or 5 x 5 x 5

The Laws of Exponents:
#1: Exponential form:The exponent of a power indicates
how many times the base multiplies itself.n
n times
x x x x x x x x

       3
Example: 5 5 5 5  
n factors of x

#2: Multiplying Powers:If you are multiplying Powers
with the same base, KEEP the BASE & ADD the EXPONENTS!m n m n
x x x


So, I get it!
When you
multiply
Powers, you
add the
exponents!512
2222
93636



#3: Dividing Powers:When dividing Powers with the
same base, KEEP the BASE & SUBTRACT the EXPONENTS!m
m n m n
n
x
x x x
x

  
So, I get it!
When you
divide
Powers, you
subtract the
exponents!16
22
2
2
426
2
6



Try these:
22
33.1 
42
55.2 
25
.3 aa 
72
42.4 ss 
32
)3()3(.5 
3742
.6 tsts 
4
12
.7
s
s 
5
9
3
3
.8 
44
812
.9
ts
ts 
54
85
4
36
.10
ba
ba


22
33.1 
42
55.2 
25
.3 aa 
72
42.4 ss 
32
)3()3(.5 
3742
.6 tsts 8133
422

 725
aa
 972
842 ss
 SOLUTIONS642
55
 243)3()3(
532

 793472
tsts 



4
12
.7
s
s 
5
9
3
3
.8 
44
812
.9
ts
ts 
54
85
4
36
.10
ba
ba SOLUTIONS8412
ss
 8133
459

 4848412
tsts 
 35845
9436 abba 


#4: Power of a Power:If you are raising a Power to an
exponent, you multiply the exponents!
n
m mn
xx
So, when I
take a Power
to a power, I
multiply the
exponents52323
55)5( 

#5: Product Law of Exponents:If the product of the
bases is powered by the same exponent, then the result is a
multiplication of individual factors of the product, each powered
by the given exponent.
n
nn
xy x y
So, when I take
a Power of a
Product, I apply
the exponent to
all factors of
the product.222
)( baab

#6: Quotient Law of Exponents:If the quotient of the
bases is powered by the same exponent, then the result is both
numerator and denominator , each powered by the given exponent. n
n
n
xx
yy




So, when I take a
Power of a
Quotient, I apply
the exponent to
all parts of the
quotient.81
16
3
2
3
2
4
4
4





Try these:
5
2
3.1 
4
3
.2a 
3
2
2.3a  
2
352
2.4 ba 
22
)3(.5a 
3
42
.6ts 





5
.7
t
s 








2
5
9
3
3
.8 








2
4
8
.9
rt
st 








2
54
85
4
36
.10
ba
ba


5
2
3.1 
4
3
.2a 
3
2
2.3a  
2
352
2.4 ba 
22
)3(.5a 
3
42
.6ts SOLUTIONS10
3 12
a 6323
82 aa
 6106104232522
1622 bababa 
 
4222
93 aa
 1263432
tsts 








5
.7
t
s 








2
5
9
3
3
.8 








2
4
8
.9
rt
st 








2
54
85
4
36
10
ba
ba SOLUTIONS
622322
2
3
8199 babaab 
 2
82
2
4
r
ts
r
st








 
8
2
4
33 5
5
t
s

#7: Negative Law of Exponents:If the base is powered
by the negative exponent, then the base becomes reciprocal with the
positive exponent.1
m
m
x
x


So, when I have a
Negative Exponent, I
switch the base to its
reciprocal with a
Positive Exponent.
Ha Ha!
If the base with the
negative exponent is in
the denominator, it
moves to the
numerator to lose its
negative sign!93
3
1
125
1
5
1
5
2
2
3
3




and

#8: Zero Law of Exponents:Any base powered by zero
exponent equals one.0
1x 1)5(
1
15
0
0
0



a
and
a
and
So zero
factors of a
base equals 1.
That makes
sense! Every
power has a
coefficient
of 1.

Try these:
0
2
2.1 ba 
42
.2 yy 
1
5
.3a 
 72
4.4 ss  


4
32
3.5 yx 
0
42
.6 ts 








1
2
2
.7
x 








2
5
9
3
3
.8 








2
44
22
.9
ts
ts 








2
54
5
4
36
.10
ba
a

SOLUTIONS
0
2
2.1ba 
1
5
.3a 
 72
4.4 ss  


4
32
3.5 yx 
0
42
.6ts 1 5
1
a 5
4s  
12
8
1284
81
3
y
x
yx 
 1










1
2
2
.7
x 








2
5
9
3
3
.8 








2
44
22
.9
ts
ts 








2
54
5
4
36
.10
ba
a SOLUTIONS4
4
1
x
x






 
8
8
2
4
3
1
33 

 
44
2
22
tsts 

 2
10
1022
81
9
a
b
ba 

Tags