LEC-9 CL 601 Mohr-Coloumb Soil Modelling.pptx

samirsinhparmar 29 views 57 slides Sep 21, 2024
Slide 1
Slide 1 of 57
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57

About This Presentation

Constitutive modeling of soil;
Constitutive modelling;
Mohr- Coloumb Soil Modelling;
Computational Géotechnique;
Mohr-coloumb constitutive modelling;
soil friction angle;
drained test;
undrained test;;
Critical State soil mechanics
M Tech geotechnical Engg.;


Slide Content

Constitutive Modelling of Geomaterials Prof. Samirsinh P Parmar Mail: [email protected] Asst. Prof. Department of Civil Engineering, Faculty of Technology, Dharmasinh Desai University, Nadiad , Gujarat, INDIA Lecture: : Mohr- Coloumb Soil Modelling (Computational Géotechnique)

Idealized and Real Stress-Strain Behavior of Soils Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 2

Basic Concepts of Mohr-Coulomb Model B ili nea r app r o x i m a t i o n o f t r i a x i a l te s t Ba s i c l a w: for f    r evers i b l e e l ast i c s t r a i n  irr e v e rs i b l e p l a s ti c s tr a in f  f (  x ,  y ,  z ,  xy ,  yz ,  zx ) f = y i e l d f unc ti on    i i i e   p i  x , y , e t c. i e  p i   i  p Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 3

M ohr-Cou l o mb S o il M ode li ng Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 4

M ohr-Cou l o mb S o il M ode li ng F l o w ru le for p lastic strain: T his m eans: , , e tc.  i  p     g i  x  p      g x     y p   g y Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 5

M ohr-Cou l o mb S o il M ode li ng   a multiplier that determines the magnit ude of plastic strains  g   de t e r m i ne s t h e d i r e c ti o n o f p l a s ti c strain Cl a ss i c a l a ss o c i a te d p l a s t i c i t y : g = f G ene r a l non - a ss o c i a te d p l a s t i c i t y : g  f M-C m ode l: f  r – s s i n  – c c o s  : y i e l d fun c t i on g  r – s s i n  – c c o s  : p l a s t i c po t en t i a l fun c t i on i Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 6

M ohr-Cou l o mb S o il M ode li ng N on li nea r F a il ur e E nve l ope R e pr e s en t a ti on Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 7

M ohr-Cou l o mb S o il M ode li ng F ric ti o n A ng l e Defin iti o ns Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 8

M ohr-Cou l o mb S o il M ode li ng St r eng t h E nve l ope s for a R ange of S o i l T ype s Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 9

M ohr-Cou l o mb S o il M ode li ng  t c Ver sus R e l a ti v e D ens it y an d U n i t We i gh t Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 10

Fr icti o n A ng le D il a t anc y A ng l e R e l a ti ons h i ps Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 11

i n wh i c h:   1 = C o r r ec t i o n f o r p ar t i c l e s h a p e   1 = -6 o For high sphericity and subrounded shape For low sphericity and angular shape   1 = + 2 o   2 = C o r r ec t i o n f o r p ar t i c l e s i ze (effe c t i v e s i ze, d 1 )   2 = - 1 1   2 = - 9 o   2 = -4   2 = o For d 10 > 2.0 mm (gravel) For 2.0 > d 10 >0.6 mm (coarse sand) For 0.6 > d 10 >0.2 mm (medium sand) For 0.2 > d 10 >0.06 mm (fine sand) o   3 = C o r r ec t i o n f o r g ra d u a t i o n ( u n i f o r m i t y c o eff i c i e n t , C u )   3 = -2 o For C u > 2.0 (well-graded) For C u = 2.0 (medium graded) For C u < 2.0 (poorly graded)   3 = - 1 o   3 =   4 = C o r r ec t i o n f o r re l a t i v e d e n s i t y ( D r )   4 = -1   4 = o For 0 < D r <0.5 (loose) For 0.5 < D r < 0.75 (intermediate) For 0.75 < D r < 1.00 (dense)   4 = + 4 o  tc  36       o 1 2    3       4 5  5 = Correction for type of mineral  5 = 0  5 = +4 o  5 = +6 o For quartz For feldspar, calcite, chlorite For muscovite mica Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 12

 cv  m ax   cv  0. 8  for N C C l a ys vs. P I Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 13

Influence of Intermediate Principal Stress on Friction Angle Introduction: Models and soil mechanics S p ec i al c o n d iti o n s N a m e o f t e s t D i a g r a m  a   b   c T r u e t r i a x i al  b   c   r Cylindrical compression The “triaxial” test  b  P l a n e st ra i n o r b i a x ial  b  P l a n e st re s s  b   c   r  One-dimensional compression The oedometer test  b   c   r  Uniaxial compression or Unconfined compression  a   b   c  I s o t r op i c c o m p re ssi on Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 14

Influence of Intermediate Principal Stress on Friction Angle Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 15

Dra i ne d Sim p le Shear Te st Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 16

Ho w to Under stand   =  +  i or  =  -  i  i = inter particle angle of friction quartz sand:    – 30 o Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 17

Dra i ne d Tr i a xi a l Te st  v   x   y   z  2  x   y t a n   2 s i n  1  s i n  (iden ti c al t o b i a x i al t e s t) Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 18

STRESS-STRAIN BEHAVIOR, VOLUME CHANGE, AND SHEARING OF SANDS Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 19

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 20

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 21

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 22

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 23

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 24

CR I T I CA L STATE Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 25

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 26

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 27

C r i t i c al S tate Definition: It is the soil state at which shearing occurs at constant volume and constant shearing stress At critical state, soil density and stress are in equilibrium, that is, the soil has no need to contract or dilate Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 28

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 29

SOURCES OF DRAINED SHEAR STRENGTH Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 30

What factors contribute to the strength of sand? D e nsity C o nfin e m e nt Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 31

S a n d – E ffe c t of D R q  d D r ai ne d  n o e x c es s p o r e press u r e C D t r ia x ial t es ts on dens e a n d loo s e s a n d spe cim ens Same i n itial co n fi n i n g s t res s b ut d iff eren t i n itial D R q   1   3 L oose s pecime n De nse s pecimen Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 32

q  d q   1   3 L oose s pecime n De nse s pecimen  v ol L oose s pecime n De nse s pecimen  d ( c o ntr a ct i o n ) ( di l a t i o n ) Dr a i ned  n o e x ce s s p o r e pre ss ure D il a t i ve Co n t ra c t i ve C R ITICA L S TATE Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 33

e Co n t ra c t i ve s p e c i m en e a t c ri t ica l st a te D il a t i ve s p e c i m en  d C r i t i c a l - s tat e v oid r atio e cs Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 34

S ources of s hear s t r ength F r i c ti o n be tw ee n s o il pa r ti cle s Pa r ti cl e re a rr ang e m e nt Int erl o ck ing be tw ee n pa r ti cles Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 35

S ources of s hear in g s trength Shearing strength of contractive sands is due primarily to friction between soil particles and particle rearrangement Shearing strength of dilative sands is due to interlocking between particles that has to be overcome by dilation (for dilation to occur, energy must be supplied to the soil for it to overcome the confining stress) Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 36

S a n d – E ffe c t of c onfi nement  d D r ai ne d - n o e x c es s p o r e press u r e C D t r ia x ial t es ts on co n t r acti v e s a n d spe cim ens Same i n itial D R b ut d iff eren t i n itial co n fi n i n g s t res s q =  ’ 1 -  ’ 3  ’ 3   ’ 3   ’ 3 q cs 2q cs 3q cs Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 37

     c C r i t i c a l - s tat e en v elo p e  ’ 3   ’ 3   ’ 3   c  c Critical-state envelope  c A Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 38

D r ai ne d  n o e x c es s p o r e press u r e C D t r ia x ial t es ts on d ila t i v e s a n d spe cim ens Same i n itial D R b ut d iff eren t i n itial co n fi n i n g s t res s q =  ’ 1 -  ’ 3  d  ’ 3 q cs 1 / 2q cs 1 / 4q cs 1 / 2  ’ 3 1 / 4  ’ 3 S a n d – E ffe c t of c onfi nement Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 39

   C r i t i c a l - s tat e en v elo p e  ’ 3   ’ 3   ’ 3  c C ri t ica l - s t a te e n ve l o p e A     ’ 3     ’ 3 dil a t i ve c o n t ra c t i ve  c s   c   c   c   c Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 40

D r ai ne d  n o e x c es s p o r e press u r e C D t r ia x ial t es ts on d ila t i v e s a n d spe cim ens Same i n itial D R b ut d iff eren t i n itial co n fi n i n g s t res s q =  ’ 1 -  ’ 3 q peak 1/2  ’ 3 q peak 1/4  ’ 3  d  ’ 3 q cs S a n d – E ffe c t of c onfi nement Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 41

   P e ak an d cr iti c al - state e nv el o p e s  ’ 3   ’ 3   ’ 3  c C ri t ica l - s t a te e n ve l o p e A     ’ 3     ’ 3 Pe a k e n ve l o p e dil a t i ve c o n t ra c t i ve  c  pe ak  pe ak   c   c Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 42

   P e ak an d cr iti c al - state f r i c ti o n ang l e s  c C ri t ica l - s t a te e n ve l o p e Pe a k e n ve l o p e dil a t i ve c o n t ra c t i ve  pe ak  pe ak Hi gh e r  p e a k Low e r  p e a k u n t i l  c i s re a che d C o n fi n e m e n t Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 43

C r i t i c a l - s tat e f r i c t ion angle – Also called constant-volume  The  at very large strains  c = 28 o to 36 o  silica sands  c = 37 o to 44 o  carbonate sands Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 44

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 45

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 46

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 47

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 48

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 49

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 50

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 51

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 52

UNDRAINED SHEAR STRENGTH Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 53

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 54

Prof. Samirsinh P Parmar, CL-DDU, Gujarat, India 55

Disclaimer The purpose of publishing this “ PPT” is fully academic. Publisher does not want any credit or copyright on it. You can download it , modify it, print it, distribute it for academic purpose. Knowledge increases by distributing it, hence please do not involve yourself in “ Knowledge Blockade” nuisance in academic industry. Before thinking of copyright just think @ the things we use in routine which we are using freely, without copyright. Man may die- does not knowledge. Jurisdiction is limited to Godhra , Panchmahals , Gujarat, India.