23
Schematic Diagram of Steam Power PlantFurnace
T
CB
P
Generator Electricity
Electric
Motor
Cooling Water
From Ocean
Q2Q1
WT
WP
FuelAir
Flue Gases
Heat
Rejected
Heat
Supplied
TheworkingsubstancefollowsalongBoilertoTurbine,Turbineto
condenser,condensertoPump.
24
Energy Balance net net
Cycle Cycle
QW= 12 TP
Q Q W W− = − 1 2 2
1 1 1 1
1
net TP
cycle
W W W Q Q Q
Q Q Q Q
−−
= = = = −
25
Rankine Cycle : The Ideal Cycle for Vapor Power Cycles
(From Thermo-I Cengel (10-2))
•ManyoftheimpracticalitiesassociatedwiththeCarnotcyclecanbe
eliminatedbysuperheatingthesteamintheboilerandcondensingit
completelyinthecondenser.ThecyclethatresultsistheRankine
cycle,whichistheidealcycleforvaporpowerplants.Theideal
Rankinecycledoesnotinvolveanyinternalirreversibilityand
consistsofthefollowingfourprocesses:
•Isentropiccompression(pressurization)inapump
•Constantpressureheatadditioninaboiler
•Isentropicexpansioninaturbine
•Constantpressureheatrejectioninacondenser
29
•2-3:Reversibleheatingof
subcooledliquidatconstant
pressuretothesaturated
liquid(Preheating).
•ThePreheatingiscarriedout
usingEconomizersorFeed
WaterHeaters.
•Economizersuseexhaust
gasesfromtheburningof
fueland,FeedWater
Heatersuseextractedsteam
fromtheturbine.
The Heat Addition in Ideal Rankine Cycle
30
•AllfourcomponentsassociatedwiththeRankine
cycle(thepump,boiler,turbine,andcondenser)
aresteady-flowdevices,andthusallfour
processesthatmakeuptheRankinecyclecan
beanalyzedassteady-flowprocesses.
•Thekineticandpotentialenergychangesof
thesteamareusuallysmallrelativetothework
andheattransfertermsandarethereforeusually
neglected.
•Thenthesteady-flowenergyequationperunit
massofsteamreducesto
The Energy Analysis of Ideal Rankine Cycle
31
•Theboilerandthecondenserdonotinvolveanywork,andthe
pumpandtheturbineareassumedtobeisentropic.Thenthe
conservationofenergyrelationforeachdevicecanbeexpressed
asfollows
The Energy Analysis of Ideal Rankine Cycle
32
•TheThermalEfficiencyoftheRankinecycleisdeterminedas
The Energy Analysis of Ideal Rankine Cycle
33
•TheactualvaporpowercyclediffersfromtheidealRankinecycle,asa
resultofirreversibilitiesinvariouscomponents.Fluidfrictionand
heatlosstothesurroundingsarethetwocommonsourcesof
irreversibilities.
Deviation of Actual Vapor Power Cycles From
Idealized Ones
Fluidfrictioncausespressure
dropsintheboiler,thecondenser,
andthepipingbetweenvarious
components.Asaresult,steam
leavestheboileratasomewhat
lowerpressure.Also,thepressure
attheturbineinletissomewhat
lowerthanthatattheboilerexitdue
tothepressuredropinthe
connectingpipes.Thepressuredrop
inthecondenserisusuallyvery
small.Tocompensateforthese
pressuredrops,thewatermustbe
pumpedtoasufficientlyhigher
pressurethantheidealcyclecalls
for.Thisrequiresalargerpumpand
largerworkinputtothepump.
34
Deviation of Actual Vapor Power Cycles From
Idealized Ones
35
•Theothermajorsourceofirreversibilityistheheatlossfromthe
steamtothesurroundingsasthesteamflowsthroughvarious
components.Tomaintainthesamelevelofnetworkoutput,moreheat
needstobetransferredtothesteamintheboilertocompensatefor
theseundesiredheatlosses.Asaresult,cycleefficiencydecreases.
•Ofparticularimportancearetheirreversibilitiesoccurringwithinthe
pumpandtheturbine.Apumprequiresagreaterworkinput,anda
turbineproducesasmallerworkoutputasaresultofirreversibilities.
Underidealconditions,theflowthroughthesedevicesisisentropic.The
deviationofactualpumpsandturbinesfromtheisentropiconescanbe
accountedforbyutilizingisentropicefficiencies,definedas
Deviation of Actual Vapor Power Cycles From
Idealized Ones
36
•wherestates2aand4aaretheactualexitstatesofthepumpandthe
turbine,respectively,and2sand4sarethecorrespondingstatesforthe
isentropiccase.
•Otherfactorsalsoneedtobeconsideredintheanalysisofactualvapor
powercycles.Inactualcondensers,forexample,theliquidisusually
subcooledtopreventtheonsetofcavitation,therapidvaporizationand
condensationofthefluidatthelow-pressuresideofthepumpimpeller,
whichmaydamageit.Additionallossesoccuratthebearingsbetween
themovingpartsasaresultoffriction.Steamthatleaksoutduringthe
cycleandairthatleaksintothecondenserrepresenttwoothersources
ofloss.Finally,thepowerconsumedbytheauxiliaryequipmentsuchas
fansthatsupplyairtothefurnaceshouldalsobeconsideredin
evaluatingtheoverallperformanceofpowerplants.
Deviation of Actual Vapor Power Cycles From
Idealized Ones
37
•Steampowerplantsareresponsiblefortheproductionofmost
electricpowerintheworld,andevensmallincreasesinthermal
efficiencycanmeanlargesavingsfromthefuelrequirements.
Therefore,everyeffortismadetoimprovetheefficiencyofthe
cycleonwhichsteampowerplantsoperate.
•Thebasicideabehindallthemodificationstoincreasethethermal
efficiencyofapowercycleisthesame:Increasetheaverage
temperatureatwhichheatistransferredtotheworkingfluidin
theboiler,ordecreasetheaveragetemperatureatwhichheat
isrejectedfromtheworkingfluidinthecondenser.Thatis,the
averagefluidtemperatureshouldbeashighaspossibleduring
heatadditionandaslowaspossibleduringheatrejection.
•Nextwediscussthreewaysofaccomplishingthisforthesimple
idealRankinecycle.
Increase in the Efficiency of the Rankine Cycle
41
•Theaveragetemperatureatwhichheat
istransferredtosteamcanbeincreased
withoutincreasingtheboilerpressure
bysuperheatingthesteamtohigh
temperatures.Theeffectof
superheatingontheperformanceof
vaporpowercyclesisillustratedona
T-sdiagram.
•Thecoloredareaonthisdiagram
representstheincreaseinthenetwork.
Thetotalareaundertheprocesscurve
3-3’representstheincreaseintheheat
input.
Superheating the Steam to High Temperatures
(Increases T
high,avg)
•Thusboththenetworkandheatinputincreaseasaresultofsuperheatingthe
steamtoahighertemperature.Theoveralleffectisanincreaseinthermal
efficiency,however,sincetheaveragetemperatureatwhichheatisadded
increases.
42
•Superheatingthesteamtohighertemperatureshasanothervery
desirableeffect:Itdecreasesthemoisturecontentofthesteamatthe
turbineexit,ascanbeseenfromtheT-sdiagram(thequalityatstate
4’ishigherthanthatatstate4).
•Thetemperaturetowhichsteamcanbesuperheatedislimited,
however,bymetallurgicalconsiderations.Presentlythehigheststeam
temperatureallowedattheturbineinletisabout620°C(1150°F).Any
increaseinthisvaluedependsonimprovingthepresentmaterialsor
findingnewonesthatcanwithstandhighertemperatures.Ceramics
areverypromisinginthisregard.
Superheating the Steam to High Temperatures
(Increases T
high,avg)