Lecture-3-Column-Design.pdf

2,112 views 94 slides Mar 06, 2023
Slide 1
Slide 1 of 94
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94

About This Presentation

Column


Slide Content

COLUMN DESIGN
Dr.IzniSyahrizalbin Ibrahim
Faculty of Civil Engineering
Universiti Teknologi Malaysia
Email: [email protected]

Introduction
•Column: Subjected to axial compressive forces
•Carries load from beams and slabs down to the foundation.
•May also resist bending momentdue to continuity of structure
and loading eccentricity
•EC2 Clause 5.3.1(7):
a)Compression member where the greater cross sectional
dimension does not exceed 4 times the smaller dimension
(h4b)
b)Height is at least 3 times the section depth

Classification of Columns
Column Classification
Braced
Slender
Non-slender
Unbraced
Slender
Non-slender
Lateral stability to the structure
as a whole is provided by walls or
bracing –resist all lateral forces
Lateral loads are resisted
by the bending actionof
the column

Classification of Columns
•Slender or Non-slender column depending on the
sensitivity to second order effect (P-effect)
•Use slenderness ratio, to measure column
vulnerability by elastic instability or buckling
•Non-Slender:
a)Design action are not significantly affected by
deformation (P-effect is small)
b)P-effect can be ignored if does not exceed a
particular value
c)P-effect can be ignored if 10% of the
corresponding first order moments

Classification of Columns
•Short column –, crushing at ultimate strength
•Slender column–, buckling under low compressive
load
Compression
failure
Buckling
failure

Classification of Columns
Major axis
(x-x)
Minor axis
(y-y)
Plane of
bending
Clear height, l
Actual height

Slenderness Ratio
??????=
�
�
�
=
�
�

??????
�
l
o= Effective length of the column
i= Radius of gyration and the axis consider
I= Section moment of area of the section about the axis
A= Cross sectional area of the column

Effective Length of Column
a) l
o= lb) l
o= 2lc) l
o= 0.7ld) l
o= 0.5le) l
o= l g) l
o2lf) 0.5 l
ol
For constant cross section

Effective Length of Column
Braced Column:
�
�=�.���+
�
�
�.��+�
�
�+
�
�
�.��+�
�
Unbraced Column:
�
�=�.����+��
�
��
�
�
�+�
�
;�+
�
�
�+�
�
�+
�
�
�+�
�
k
1, k
2Relative flexibilities of rotational restraints at ends 1 & 2, respectively =
�
�
????????????
�
 Rotation of restraining members for bending moment, M
EI Bending stiffness of compression member
l Clear height of compression member between end restraints at each end
k
1, k
2=
��������??????������,??????
���
������??????�����,??????
����
=

????????????
����
2
????????????
�����
EC2: Clause 5.8.3.2(3)

Effective Length of Column
Table 3.19 & 3.20, BS 8110: Part 1: 1997
End Condition at Top
EndCondition at Bottom
1 2 3
Braced Column
1 0.75 0.80 0.90
2 0.80 0.85 0.95
3 0.90 0.95 1.00
Unbraced Column
1 1.2 1.3 1.6
2 1.3 1.5 1.8
3 1.6 1.8 -
4 2.2 - -
Simplified Method

Effective Length of Column
End Condition at Top
EndCondition at Bottom
1 2 3
Braced Column
1 0.75 0.80 0.90
2 0.80 0.85 0.95
3 0.90 0.95 1.00
Unbraced Column
1 1.2 1.3 1.6
2 1.3 1.5 1.8
3 1.6 1.8 -
4 2.2 - -
Condition 1Column connected monolithically to beams on either side which are
at least as deep as the overall dimension of the column in the plane
considered. Where column connected to a foundation this should
be designed to carry moment
Condition 2Column connected monolithically to beams or slabs on either side
which are shallower than the overall dimension of the column in
the plane considered
Condition 3Column connected to members that do not provide more than
nominal restraint to rotation
Condition 4End of column is unrestrained against both lateral movement and
rotation
Table 3.19 & 3.20, BS 8110: Part 1: 1997

Limiting Slenderness Ratio
??????
���=
��∙�∙�∙�
�
A =
1
1+0.2??????
���
: ??????
���= Effective creep ratio
B = 1+2?????? : ??????=
�
��
��
�
��
��
C = 1.7−??????
� : ??????
�=
�
�1
�
�2
n =
�
??????�
�
��
��
N
Ed= Design ultimate axial column load
M
o1, M
o2= First order moments at the end of the column with �
�2≥�
�1
f
yd= Design yield strength of reinforcement
f
cd= Design compressive strength of concrete
If ??????
���, & r
mis not known, A= 0.7, B= 1.1 & C= 0.7 may be used
EC2: Clause 5.8.3.1

Limiting Slenderness Ratio
Condition apply for C:
(1)If the end moments, M
o1& M
o2give rise to tension on the same
side of the column, then r
mshould be taken +ve(follows C1.7)
(2)If the column is in a state of double curvature, then r
mshould be
taken –ve(follows C1.7)
(3)For braced members in which the first order moment arise only
from or predominantly due to imperfections or transverse
loading, then r
mshould be taken as 1.0 (C= 0.7)
(4)For unbraced member, in general r
mshould be taken as 1.0 (C=
0.7)
If 
lim: Short (Non-slender) column
If 
lim: Slender column.Second order effects must be considered
in design
EC2: Clause 5.8.3.1

Example 1
SLENDERNESS

Example 1: Slenderness
4 m
4 m
4 m
250 500
250 500
250 500
250 500
250

400
250

400
250

400
275 350
A B C
1
2
3
4
•Bracedcolumn
•Axial load = 1050 kN
•Bending moment (major axis)= 40 kNm(top) & 12 kNm(bottom)
•Bending moment (minor axis)= 15 kNm(top) & 10 kNm(bottom)
•Concrete grade= C25
•Steel= 500 N/mm
2
l
1= 6 m l
2= 8 m

Example 1: Slenderness
l
1= 6 m l
2= 8 m
4 m
5m
1.5 m
250 500
250 500
250 500
275 350
A B C
Roof
1
st
Floor
Ground

Example 1: Slenderness
EC2: Clause 5.8.3.2(3) Method
z
z
y y
Secondary beam
250 400
L= 4 m 5m
Main beam
250 500
L= 6 m
Main beam
250 500
L= 8 m
Secondary beam
250 400
L= 4 m
-12 kNm
40 kNm
N
Ed= 1050 kN
M
z
15 kNm
-10 kNm
M
y
275 mm
M
z
350 mm
M
y
Moment & Axial Force

Example 1: Slenderness
Dimension & Size
Column:
bh= 275 300 mm
Actual length:l
z= 5000 –500 = 4500 mm
l
y= 5000 –400 = 4600 mm
Beam:
Main beam, bh= 250 500 mm
Actual length:l
1= 6000 mm
l
2= 8000 mm
Secondary beam, bh= 250 400 mm
Actual length:l
1= l
2= 4000 mm

Example 1: Slenderness
Moment of Inertia, I= bh
3
/12
Column:
??????
��=
275×300
3
12
=0.98×10
9
mm
4
??????
��=
300×275
3
12
=0.61×10
9
mm
4
Beam:
Main beam, ??????
��=
250×500
3
12
=2.60×10
9
mm
4
Secondary beam, ??????
��=
250×400
3
12
=1.33×10
9
mm
4

Example 1: Slenderness
Stiffness, K= EI/l
Column:
�
��=
0.98×10
9
4500
=2.18×10
5
mm
3
�
��=
0.61×10
9
4600
=1.32×10
5
mm
3
Beam:
Main beam �
��1=
2.60×10
9
6000
=4.34×10
5
mm
3
�
��2=
2.60×10
9
8000
=3.26×10
5
mm
3
Secondary beam�
��1=�
��2=
1.33×10
9
4000
=3.33×10
5
mm
3

Example 1: Slenderness
Relative Column Stiffness, k= K
col/2(K
beam)
z-axis:
Top end: �
2=
2.18×10
5
24.34×10
5
+3.26×10
5
=0.14>0.1 k
2= 0.14
Bottom end:�
1=
2.18×10
5
24.34×10
5
+3.26×10
5
=0.14>0.1 k
1= 0.14
y-axis:
Top end: �
2=
1.32×10
5
23.33×10
5
+3.33×10
5
=0.10<0.1 k
2= 0.10
Bottom end:&#3627408472;
1=
1.32×10
5
23.33×10
5
+3.33×10
5
=0.10<0.1 k
1= 0.10

Example 1: Slenderness
Effective Length of Column
&#3627408473;
&#3627408476;=0.5&#3627408473;1+
&#3627408472;
1
0.45+&#3627408472;
1
1+
&#3627408472;
2
0.45+&#3627408472;
2
&#3627408473;
&#3627408476;,&#3627408487;=0.5&#3627408473;
&#3627408487;1+
0.14
0.45+0.14
1+
0.14
0.45+0.14
=2795mm
&#3627408473;
&#3627408476;,&#3627408486;=0.5&#3627408473;
&#3627408486;1+
0.10
0.45+0.10
1+
0.10
0.45+0.10
=2718mm

Example 1: Slenderness
Radius of Gyration, &#3627408522;=
??????
&#3627408488;
??????
&#3627408487;&#3627408487;=
??????
&#3627408487;&#3627408487;
??????
=
0.98×10
9
275×350
=101
??????
&#3627408486;&#3627408486;=
??????
&#3627408486;&#3627408486;
??????
=
0.61×10
9
275×350
=79.4
Slenderness Ratio, = l
o/i
??????
&#3627408487;&#3627408487;=
2795
101
=&#3627409360;&#3627409365;.&#3627409365;
??????
&#3627408486;&#3627408486;=
2718
79.4
=&#3627409361;&#3627409362;.&#3627409360;

Example 1: Slenderness
Slenderness Limit, ??????
&#3627408525;&#3627408522;&#3627408526;=
&#3627409360;&#3627409358;∙&#3627408488;∙&#3627408489;∙&#3627408490;
&#3627408527;
A= 0.7 (
effNOT known)
B= 1.1 (NOT known)
C= 1.7 –r
m(where r
m= (M
o1/M
o2)
z-axis:??????
&#3627408474;,&#3627408487;=
−12
40
=−0.30
C
z= 1.7 –(0.30) = 2.00
y-axis:??????
&#3627408474;,&#3627408486;=
−10
15
=−0.67
C
y= 1.7 –(0.67) = 2.37
&#3627408475;=
&#3627408449;
??????&#3627408465;
??????
&#3627408464;&#3627408467;
&#3627408464;&#3627408465;
&#3627408467;
&#3627408464;&#3627408465;=
0.85&#3627408467;
&#3627408464;&#3627408472;
??????
&#3627408464;
=
0.85×25
1.5
=14.17N/mm
2
&#3627408475;=
1050×10
3
275×350×14.17
=0.77
??????
&#3627408473;??????&#3627408474;,&#3627408487;&#3627408487;=
20×0.7×1.1×2.00
0.77
=35.1>??????
&#3627408487;&#3627408487;=27.7 Non-slender about z-axis
??????
&#3627408473;??????&#3627408474;,&#3627408486;&#3627408486;=
20×0.7×1.1×2.37
0.77
=41.5>??????
&#3627408486;&#3627408486;=34.2 Non-slender about y-axis

Example 1: Slenderness
Effective Length, l
o= Factor Clear Height
z-axis:End condition: Top & Bottom = Condition 1
Factor = 0.75
&#3627408473;
&#3627408476;,&#3627408487;=0.75×4500=3375mm
y-axis:End condition: Top & Bottom = Condition 1
Factor = 0.75
&#3627408473;
&#3627408476;,&#3627408486;=0.75×4600=3450mm
Slenderness Ratio, = l
o/i
??????
&#3627408487;&#3627408487;=
3375
101
=33.4<??????
&#3627408473;??????&#3627408474;,&#3627408487;&#3627408487;=35.1 Non-slender about z-axis
??????
&#3627408486;&#3627408486;=
3450
79.4
=43.5>??????
&#3627408473;??????&#3627408474;,&#3627408486;&#3627408486;=41.5 Slender about y-axis
Simplified Method

Axial Load & Moment in Column
For analysis without full frame analysis:
a)Axial loads may generally be obtained by increasing the loads
obtained by 10%by assumption that beams & slabs are simply
supported. Higher percentagemay be required when adjacent
spans and/or loadings on them are grossly dissimilar.
b)Bending moments may be calculated using the simplified one
free-joint sub-frame. The arrangement of the design ultimate
variable action should be such as that to cause maximum
moment in the column.

Example 2
AXIAL LOAD & MOMENT IN
COLUMN

Example 2: Axial Load & Moment in
Column
Level Beam
Characteristics Action (kN/m)
Permanent Variable
Roof 2/A-C 20.0 6.0
B/1-4 8.0 3.0
FirstFloor 2/A-C 27.0 12.0
B/1-4 15.0 7.0
GroundFloor 2/A-C 7.8 -
B/1-4 7.8 -
Determine axial force and bending moment in column B/2

Example 2: Axial Load & Moment in
Column
Column: 275 350 mm
Main Beam: 250 500 mm
&#3627408447;
1&#3627408486;=&#3627408447;
2&#3627408486;=4&#3627408474;
Secondary Beam:250 400 mm
&#3627408447;
1&#3627408487;=8&#3627408474;
&#3627408447;
2&#3627408487;=6&#3627408474;
z
z
y y
x
x
4 m
2/A-C
B/1-4
5m
1.5 m
w
1Z w
2Z
w
2y
w
1y
Roof
1
st
Level
Ground

Example 2: Axial Load & Moment in
Column
Roof w
1z w
2z w
1y w
2y
G
k 20 20 8 8
Q
k 6 6 3 3
Max 36 36 15.3 15.3
Min 27 27 10.8 10.8
1
st
Floor w
1z w
2z w
1y w
2y
G
k 27 27 15 15
Q
k 12 12 7 7
Max 54.5 54.5 30.8 30.8
Min 36.45 36.45 20.25 20.25
Ground w
1z w
2z w
1y W
2y
G
k 7.8 7.8 7.8 7.8
Q
k 0 0 0 0
Max 10.5 10.5 10.5 10.5
Min 10.5 10.5 10.5 10.5

Example 2: Axial Load & Moment in
Column
Roof to 1
st
Level:
Main Beam: (36 8 0.5) + (36 6 0.5) 252 kN
Sec. Beam: (15.3 4 0.5) + (15.3 4 0.5) 61 kN
Selfweight: 1.35 (0.275 0.35 4 25) 13 kN
N
1st-Roof: 326 kN
1
st
Level to Ground:
Load from above: 326 kN
Main Beam: (54.5 8 0.5) + (54.5 6 0.5) 381 kN
Sec. Beam: (30.8 4 0.5) + (30.8 4 0.5) 123 kN
Selfweight: 1.35 (0.275 0.35 5 25) 16 kN
N
1st-Gnd 847 kN
Ground to Footing:
Load from above: 847 kN
Main Beam: (10.5 8 0.5) + (10.5 6 0.5) 74 kN
Sec. Beam: (10.5 4 0.5) + (10.5 4 0.5) 42 kN
Selfweight: 1.35 (0.275 0.35 1.5 25) 5 kN
N
Gnd-Foot: 967 kN
Axial Loads

Example 2: Axial Load & Moment in
Column
Bending Moments at z-zAxis
Stiffness, K= I/L
Beam:6&#3627408474;:&#3627408446;
&#3627408463;1=
250×500
3
12×6000
=4.34×10
5
&#3627408474;&#3627408474;
3
8&#3627408474;:&#3627408446;
&#3627408463;2=
250×500
3
12×8000
=3.26×10
5
&#3627408474;&#3627408474;
3
Column:4&#3627408474;:
275×350
3
12×4000
=2.46×10
5
&#3627408474;&#3627408474;
3
5&#3627408474;:
275×350
3
12×5000
=1.97×10
5
&#3627408474;&#3627408474;
3
1.5&#3627408474;:
275×350
3
12×1500
=6.55×10
5
&#3627408474;&#3627408474;
3

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
27×6
2
12
=81.0&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
36×8
2
12
=192.0&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409359;&#3627409359;&#3627409359;&#3627408524;&#3627408501;&#3627408526;6 m 8 m
4m
w
min= 27.0 kN/m
w
max= 36.0 kN/m
K
c
0.5K
b1 0.5K
b2
Roof to 1
st
Level
Moment in Column
&#3627408448;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;
??????&#3627408464;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=111×
2.46
2.46+0.5×4.34+0.5×3.26
=&#3627409362;&#3627409361;.&#3627409364;kNm
M
1M
2

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
36.5×6
2
12
=109.4&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
54.5×8
2
12
=290.4&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409359;&#3627409366;&#3627409359;&#3627408524;&#3627408501;&#3627408526;
1
st
Level to Ground
Moment in upper column, M
upper
&#3627408448;
&#3627408482;&#3627408477;&#3627408477;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=181×
2.46
2.46+1.97+0.5×4.34+0.5×3.26
=&#3627409363;&#3627409362;.&#3627409359;kNm
Moment in lower column, M
lower
&#3627408448;
&#3627408473;&#3627408476;&#3627408484;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=181×
1.97
2.46+1.97+0.5×4.34+0.5×3.26
=&#3627409362;&#3627409361;.&#3627409361;kNm
M
1M
2
6 m 8 m
4m
5 m
w
min= 36.5 kN/m
w
max= 54.5 kN/m
K
c,l
K
c,u
0.5K
b1 0.5K
b2

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
10.5×6
2
12
=31.6&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
10.5×8
2
12
=56.2&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409360;&#3627409362;.&#3627409364;&#3627408524;&#3627408501;&#3627408526;
Ground to Footing
Moment in upper column, M
upper
&#3627408448;
&#3627408482;&#3627408477;&#3627408477;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=24.6×
1.97
1.97+6.55+0.5×4.34+0.5×3.26
=&#3627409361;.&#3627409367;kNm
Moment in lower column, M
lower
&#3627408448;
&#3627408473;&#3627408476;&#3627408484;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=24.6×
6.55
1.97+6.55+0.5×4.34+0.5×3.26
=&#3627409359;&#3627409361;.&#3627409359;kNm
M
1M
2
6 m 8 m
5 m
1.5 m
w
max= 10.5 kN/m w
max= 10.5 kN/m
K
c,l
K
c,u
0.5K
b1 0.5K
b2

Example 2: Axial Load & Moment in
Column
Bending Moments at z-zAxis, M
z-z(kNm)
43.6
54.1 43.3
3.9 13.1
6.5

Example 2: Axial Load & Moment in
Column
Bending Moments at y-yAxis
Stiffness, K= I/L
Beam:4&#3627408474;:&#3627408446;
&#3627408463;1=
250×400
3
12×4000
=3.33×10
5
&#3627408474;&#3627408474;
3
4&#3627408474;:&#3627408446;
&#3627408463;2=
250×400
3
12×4000
=3.33×10
5
&#3627408474;&#3627408474;
3
Column:4&#3627408474;:
350×275
3
12×4000
=1.52×10
5
&#3627408474;&#3627408474;
3
5&#3627408474;:
350×275
3
12×5000
=1.21×10
5
&#3627408474;&#3627408474;
3
1.5&#3627408474;:
350×275
3
12×1500
=4.04×10
5
&#3627408474;&#3627408474;
3

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
10.8×4
2
12
=14.4&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
15.3×4
2
12
=20.4&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409364;&#3627408524;&#3627408501;&#3627408526;4 m 4m
4m
w
max= 10.8 kN/m
w
max= 15.3 kN/m
K
c
0.5K
b1 0.5K
b2
Roof to 1
st
Level
Moment in Column
&#3627408448;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;
??????&#3627408464;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=111×
1.52
1.52+0.5×3.33+0.5×3.33
=&#3627409359;.&#3627409367;kNm
M
1M
2

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
20.3×4
2
12
=27&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
30.8×4
2
12
=41&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409359;&#3627409362;&#3627408524;&#3627408501;&#3627408526;
1
st
Level to Ground
Moment in upper column, M
upper
&#3627408448;
&#3627408482;&#3627408477;&#3627408477;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=14×
1.52
1.52+1.21+0.5×3.33+0.5×3.33
=&#3627409361;.&#3627409363;kNm
Moment in lower column, M
lower
&#3627408448;
&#3627408473;&#3627408476;&#3627408484;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=14×
1.21
1.52+1.21+0.5×3.33+0.5×3.33
=&#3627409360;.&#3627409366;kNm
M
1M
2
4 m 4 m
4m
5 m
w
min= 20.3 kN/m
w
max= 30.8 kN/m
K
c,l
K
c,u
0.5K
b1 0.5K
b2

Example 2: Axial Load & Moment in
Column
Fixed End Moment, FEM
&#3627408448;
1=
&#3627408484;&#3627408447;
2
12
=
10.5×4
2
12
=14&#3627408472;&#3627408449;&#3627408474;
&#3627408448;
2=
&#3627408484;&#3627408447;
2
12
=
10.5×4
2
12
=14&#3627408472;&#3627408449;&#3627408474;
∆&#3627408441;&#3627408440;&#3627408448;=&#3627408448;
2−&#3627408448;
1=&#3627409358;&#3627408524;&#3627408501;&#3627408526;
Ground to Footing
Moment in upper column, M
upper
&#3627408448;
&#3627408482;&#3627408477;&#3627408477;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=&#3627409358;.&#3627409358;kNm
Moment in lower column, M
lower
&#3627408448;
&#3627408473;&#3627408476;&#3627408484;&#3627408466;&#3627408479;=∆&#3627408441;&#3627408440;&#3627408448;×
??????&#3627408464;,&#3627408482;
??????&#3627408464;,&#3627408482;+??????
&#3627408464;,&#3627408473;+0.5??????
&#3627408463;1+0.5??????
&#3627408463;2
=&#3627409358;.&#3627409358;kNm
M
1M
2
4 m 4 m
5 m
1.5 m
w
max= 10.5 kN/m w
max= 10.5 kN/m
K
c,l
K
c,u
0.5K
b1 0.5K
b2

Example 2: Axial Load & Moment in
Column
Bending Moments at y-yAxis, M
y-y(kNm)
1.9
3.5 2.8
0.0

Design Moments
•Elastic moment from frame action –should NOT
consider any redistribution
•Slender column:
a)Non-linear analysis to determine second order
moment
b)Nominal stiffness method (EC2: Clause 5.8.7), or
c)Nominal curvature method (EC2: Clause 5.8.8)

Design Moments
Slender Column
Nominal Curvature Method (EC2: Clause 5.8.8)
&#3627408500;
??????&#3627408517;=&#3627408500;
&#3627409358;??????&#3627408517;+&#3627408500;
&#3627409360;
M
0Ed= First order moment including effect imperfection
M
Ed= Nominal second order moment

Design Moments
Braced Slender Column
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;??????+&#3627408500;
&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;+&#3627409358;.&#3627409363;&#3627408500;
&#3627409360;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
M
02
M N
Ede
i
M
01
M
0E
First Order
Moment
0.5M
2
0.5M
2
M
2= N
ed e
2
Additional Second
Order Moment
+ =
M
02
M
0E+M
2
M
01+ 0.5M
2
Total Moment
Diagram

Design Moments
Unbraced Slender Column
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409359;+&#3627408500;
&#3627409360;,&#3627408500;
&#3627409358;&#3627409360;+&#3627408500;
&#3627409360;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
M
02
M N
Ede
i
M
01
First Order
Moment
M
2
M
2 = N
Ede
2
Additional Second
Order Moment
+ =
M
02+ M
2
M
01+ M
2
Total Moment
Diagram

Design Moments
&#3627408448;
01=&#3627408474;??????&#3627408475;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;+&#3627408449;
??????&#3627408465;&#3627408466;
??????
&#3627408448;
02=&#3627408474;&#3627408462;&#3627408485;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;+&#3627408449;
??????&#3627408465;&#3627408466;
??????
N
Ed= Ultimate axial load
&#3627408466;
&#3627408476;=&#3627408474;&#3627408462;&#3627408485;

30
,20&#3627408474;&#3627408474;
&#3627408466;
??????=
&#3627408473;
&#3627408476;
400
M
top, M
bot= Moment at top and bottom of column
&#3627408448;
0??????=0.6&#3627408448;
02+0.4&#3627408448;
01≥0.4&#3627408448;
02(M
01& M
02should have the same sign if they
produce tension on the same side, otherwise opposite sign)
M
2= Nominal second order moment = &#3627408449;
??????&#3627408465;&#3627408466;
2
e
2= Deflection =

&#3627408473;
&#3627408479;&#3627408473;
&#3627408476;
2
&#3627408464;
l
o= Effective length
c= Factor depending on curvature distribution, normally ??????
2
≈10

Design Moments
&#3627408473;
&#3627408479;
= Curvature = &#3627408446;
&#3627408479;&#3627408446;
??????
&#3627408473;
&#3627408479;
&#3627408476;
K
r= Axial load correction factor =
&#3627408475;
&#3627408482;−&#3627408475;
&#3627408475;
&#3627408482;−&#3627408475;
&#3627408463;&#3627408462;&#3627408473;
<1
&#3627408475;=
&#3627408449;
??????&#3627408465;
&#3627408436;&#3627408464;&#3627408467;
&#3627408464;&#3627408465;
&#3627408475;
&#3627408482;=1+?????? &#3627408475;
&#3627408463;&#3627408462;&#3627408473;=0.4 ??????=
&#3627408436;&#3627408480;&#3627408467;
&#3627408486;&#3627408465;
&#3627408436;&#3627408464;&#3627408467;
&#3627408464;&#3627408465;
K
= Creep correction factor = 1+????????????
&#3627408466;&#3627408467;≥1

ef= Effective creep factor =
??????&#3627408448;&#3627408476;??????&#3627408478;&#3627408477;
&#3627408448;
&#3627408476;??????&#3627408465;
=0if ??????<2,
&#3627408448;
&#3627408449;
>ℎ,&#3627408473;<75)
??????=0.35+
&#3627408467;
&#3627408464;&#3627408472;
200

??????
150
&#3627408473;
??????
&#3627408476;
=
??????
&#3627408486;&#3627408465;
0.45&#3627408465;
=

&#3627408467;
&#3627408486;&#3627408465;
&#3627408440;
&#3627408480;
0.45&#3627408465;
EC2: Clause 5.8.8.3: Curvature

Design Moments
EN 1992-1-2: Figure 3.1: Creep Correction Factor

Design Moments
EN 1992-1-2: Figure 3.1: Creep Correction Factor

Design Moments
Non-Slender Column
•Ignored second order moment effects
•Ultimate design moment, M
Ed= M
02
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
M
02
M N
Ede
1
M
01
M
0E
First Order
Moment

Design of Longitudinal Reinforcement
Design Chart
Solution of Basic
Equation
Approximate
Method
•For columns having
rectangular or
circularcross
section
•Symmetrical
arrangement of
reinforcement
•Unsymmetricalarrangement of
reinforcement
•Cross section is non-rectangular

Design of Longitudinal Reinforcement
For practical purpose as with BS8110, the rectangular
stress block used for design of beam may also be used
for the design of columns
F
ccF
sc
F
st

st

sc

cc
A
s
A
s’
f
cc= 
ccf
ck/
c
x
z
d
2
hd
x
Section Strain Stress
Neutral Axis

Design of Longitudinal Reinforcement
•However, unlike with BS8110 the maximum compressive
strain when designing to EC2 will be less than 0.0035if
the whole section is in compression.
•This compressive strain will further fall to 0.00175 (f
ck<
50 N/mm
2
) if the section is subject to pure compression.
•This will affect the steel strains and hence forces which
the reinforcement can carry

Design of Longitudinal Reinforcement
EC2 strain relationship at ULS for f
ck50 N/mm
2
Stress
0.0035 max
hd
x
General
Relationship
When xh
Pure
Compression
Hinge
point
h/2
0.00175 min
x
&#3627409358;.&#3627409358;&#3627409358;&#3627409359;&#3627409365;&#3627409363;&#3627408537;
&#3627408537;−
&#3627408521;
&#3627409360;0.00175
0.00175
F
ccF
sc
F
st
d
2
x

Design of Longitudinal Reinforcement
Equilibrium Equations
Equilibrium of Load:
&#3627408449;=&#3627408441;
&#3627408464;&#3627408464;+&#3627408441;
&#3627408480;&#3627408464;−&#3627408441;
&#3627408480;&#3627408481;
Equilibrium of Moment:
&#3627408448;=&#3627408441;
&#3627408464;&#3627408464;0.5ℎ−0.5??????&#3627408485;+&#3627408441;
&#3627408480;&#3627408464;0.5ℎ−&#3627408465;
2−&#3627408441;
&#3627408480;&#3627408481;&#3627408465;−0.5ℎ
where
&#3627408441;
&#3627408464;&#3627408464;=
&#3627409154;&#3627408467;
&#3627408464;&#3627408472;
??????
&#3627408464;
??????&#3627408485;&#3627408463;; &#3627408441;
&#3627408480;&#3627408464;=
&#3627408436;
&#3627408480;&#3627408464;&#3627408467;
&#3627408486;&#3627408472;
??????
&#3627408480;
;&#3627408441;
&#3627408480;&#3627408481;=
&#3627408436;
&#3627408480;&#3627408481;&#3627408467;
&#3627408486;&#3627408472;
??????
&#3627408480;

Design of Longitudinal Reinforcement
Rearranged to:
&#3627408501;
&#3627408515;&#3627408521;
=&#3627408519;??????;??????;&#3627408519;
&#3627408516;&#3627408524;;??????
&#3627408516;;
&#3627408537;
&#3627408521;
;
&#3627408488;
&#3627408532;&#3627408516;
&#3627408515;&#3627408521;
;
&#3627408488;
&#3627408532;&#3627408533;
&#3627408515;&#3627408521;
;&#3627408519;
&#3627408538;&#3627408524;;??????
&#3627408532;
&#3627408500;
&#3627408515;&#3627408521;
&#3627409361;
=&#3627408519;??????;??????;&#3627408519;
&#3627408516;&#3627408524;;??????
&#3627408516;;
&#3627408537;
&#3627408521;
;
&#3627408488;
&#3627408532;&#3627408516;
&#3627408515;&#3627408521;
;
&#3627408488;
&#3627408532;&#3627408533;
&#3627408515;&#3627408521;
;&#3627408519;
&#3627408538;&#3627408524;;??????
&#3627408532;;
&#3627408517;
&#3627408521;
;
&#3627408517;
&#3627409360;
&#3627408521;
These equations form the basis for the N-Minteraction charts
used for the design of columns

Design of Longitudinal Reinforcement

Area and Number of Reinforcement
??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.10&#3627408449;
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;
&#3627408476;??????0.002??????
&#3627408464;
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;(Outside lap location)
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.08??????
&#3627408464;(At lap location)
EC2: Clause 9.5.2

Requirements for Links
EC2: Clause 9.5.3
•The diameter of linksshould not be less than 6 mm or one-
quarter of the diameter of the longitudinal bar.
•The maximum spacing, S
maxshould not be less than:
a)20 times the minimum diameter of longitudinal bars
b)the lesser dimension of the column
c)400 mm
•At a distance greater than the larger dimensionof the column
above or below a beam these spacing can increased by a
factor of 1.67

Design Procedure
Step Task Standard
1Determine design life, exposure class, fire resistance
EN 1990 Table 2.1
EN 1992-1-1: Table 4.1
EN 1992-1-2: Sec. 5.6
2Determine material strength
BS 8500-1: Table A.3
EN 206-1: Table F1
3Select size of column EN 1992-1-2: Table 5.5
4Calculate min. cover for durability , fire and bond requirementsEN 1992-1-1: Sec. 4.4.1
5Analyze structure to obtain critical moments and axial forcesEN 1992-1-1: Sec. 5
6Check slenderness EN 1992-1-1: Sec. 5.8.3
7Determine final design moment EN 1992-1-1: Sec. 5.8.8
8Determine area of reinforcement required EN 1992-1-1: Sec. 6.1
9Detailing EN 1992-1-1: Sec. 8 & 9

Example 3
DESIGN OF NON-SLENDER
COLUMN BENT ABOUT
MAJOR AXIS

Classification: Braced non-slender column
Concrete, f
ck: 25 N/mm
2
Reinforcement, f
yk: 500 N/mm
2
Exposure Class: XC1
Fire Resistance: 1 hour
Design Life: 50 years
Effective Length, l
o: 4.2 m
Bar Size: 
bar= 20 mm, 
links= 6 mm
Example 3: Design of Non-Slender Column
Bent About Major Axis
N
Ed= 1200 kN
M
02= 35 kNm
25 kNm
M
z
M
z
z
y y250
300
Cross Section

Example 3: Design of Non-Slender Column
Bent About Major Axis
Cover: Durability, Bond & Fire Resistance
Minimum concrete cover regard to bond, C
min, bond= 20 mm (EN 1992-1-1: Table 4.2)
Minimum concrete cover regard to durability, C
min, dur= 15 mm (EN 1992-1-1: Table 4.4N)
Minimum required axis distance for R60 fire resistance,
a
sd= 36 mm assumed 
fi= 0.50(EN 1992-1-2: Table 5.2a)
Nominal concrete cover regard to fire, C
nom, fire= a
sd-
links-
bar/2
= 36 –6 –20/2 = 20 mm
Allowance in design for deviation, C
dev= 10 mm
Nominal cover, C
nom= max{C
min, bond, C
min, dur} + C
dev= 20 + 10 = 30 mm
Use C
nom= 30 mm

Example 3: Design of Non-Slender Column
Bent About Major Axis
Design Moment
For non-slender column:
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
&#3627408448;
02=&#3627408474;&#3627408462;&#3627408485;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;+&#3627408449;
??????&#3627408465;&#3627408466;
??????=35+1200×0.0105=&#3627409362;&#3627409365;.&#3627409364;&#3627408524;&#3627408501;&#3627408526;
&#3627408474;&#3627408462;&#3627408485;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;=35&#3627408472;&#3627408449;&#3627408474;
&#3627408466;
??????=
&#3627408473;
&#3627408476;
400
=
4200
400
=10.5&#3627408474;&#3627408474;=0.0105&#3627408474;
&#3627408449;
??????&#3627408465;∙&#3627408466;
&#3627408476;=1200×0.002=&#3627409360;&#3627409362;&#3627408524;&#3627408501;&#3627408526;
&#3627408466;
&#3627408476;=&#3627408474;&#3627408462;&#3627408485;

30
,20&#3627408474;&#3627408474;=&#3627408474;&#3627408462;&#3627408485;
300
30
,20&#3627408474;&#3627408474;=20&#3627408474;&#3627408474;=0.020&#3627408474;
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;=&#3627409362;&#3627409365;.&#3627409364;&#3627408524;&#3627408501;&#3627408526;

Example 3: Design of Non-Slender Column
Bent About Major Axis
Reinforcement
&#3627408465;
2=&#3627408464;+∅
&#3627408473;??????&#3627408475;&#3627408472;+

&#3627408463;&#3627408462;&#3627408479;
2
=30+6+
20
2
=46mm
&#3627408465;
2

=
46
300
=0.15
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1200×10
3
250×300×25
=0.64
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
47.6×10
6
250×300
2
×25
=0.08
From design chart:
&#3627408436;&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.35 ??????
&#3627408480;=
0.35&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
&#3627408467;
&#3627408486;&#3627408472;
=
0.35×250×300×25
500
=&#3627409359;&#3627409361;&#3627409359;&#3627409361;mm
2
??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.10&#3627408449;
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;
=
0.10×1200×10
3
0.87×500
=&#3627409360;&#3627409365;&#3627409364;mm
2
or 0.002??????
&#3627408464;=150mm
2
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;=0.04×250×300=&#3627409361;&#3627409358;&#3627409358;&#3627409358;mm
2
Provide 4H20 + 2H12 (A
s= 1483 mm
2
)
0.35

Example 3: Design of Non-Slender Column
Bent About Major Axis
Links

links, min= the larger of:
i.0.25 20 mm = 5 mmor
ii.6 mm
Use 
links= 6 mm
S
max= the lesser of:
i.20 (12 mm) = 240 mm or
ii.the lesser dimension of the column = 250 mm or
iii.400 mm
Use S
max= 240 mm
Provide H6-240
At section 300 mm below & above beam & at lap joints, S
max= 0.6 240 mm = 144 mm
Provide H6-140
250
300
H6
-
240
H6
-
140

Example 4
DESIGN OF SLENDER
COLUMN BENT ABOUT
MINOR AXIS

Classification: Braced slender column
Concrete, f
ck: 25 N/mm
2
Reinforcement, f
yk: 500 N/mm
2
Exposure Class: XC1
Fire Resistance: 1 hour
Design Life: 50 years
Effective Length, l
o: 4.13 m
Slenderness ratio, : 52
Bar Size: 
bar= 20 mm, 
links= 6 mm
Example 4: Design of Slender Column Bent
About Minor Axis
N
Ed= 1200 kN
35 kNm
25 kNm
M
z
M
z
z
y y250
300
Cross Section

Example 4: Design of Slender Column Bent
About Minor Axis
Cover: Durability, Bond & Fire Resistance
Minimum concrete cover regard to bond, C
min, bond= 20 mm (EN 1992-1-1: Table 4.2)
Minimum concrete cover regard to durability, C
min, dur= 15 mm (EN 1992-1-1: Table 4.4N)
Minimum required axis distance for R60 fire resistance,
a
sd= 36 mm assumed 
fi= 0.50(EN 1992-1-2: Table 5.2a)
Nominal concrete cover regard to fire, C
nom, fire= a
sd-
links-
bar/2
= 36 –6 –20/2 = 20 mm
Allowance in design for deviation, C
dev= 10 mm
Nominal cover, C
nom= max{C
min, bond, C
min, dur} + C
dev= 20 + 10 = 30 mm
Use C
nom= 30 mm

Example 4: Design of Slender Column Bent
About Minor Axis
Design Moment
For slender column:
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;??????+&#3627408500;
&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;+&#3627409358;.&#3627409363;&#3627408500;
&#3627409360;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
&#3627408448;
01=&#3627408474;??????&#3627408475;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;+&#3627408449;
??????&#3627408465;&#3627408466;
??????=25+1200×0.0124=&#3627409361;&#3627409365;.&#3627409362;&#3627408524;&#3627408501;&#3627408526;
&#3627408448;
02=&#3627408474;&#3627408462;&#3627408485;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;+&#3627408449;
??????&#3627408465;&#3627408466;
??????=35+1200×0.014=&#3627409362;&#3627409365;.&#3627409362;&#3627408524;&#3627408501;&#3627408526;
&#3627408474;&#3627408462;&#3627408485;&#3627408448;
&#3627408481;&#3627408476;&#3627408477;,&#3627408448;
&#3627408463;&#3627408476;&#3627408481;=35&#3627408472;&#3627408449;&#3627408474;
&#3627408466;
??????=
&#3627408473;
&#3627408476;
400
=
4130
400
=12.4&#3627408474;&#3627408474;=0.0124&#3627408474;
&#3627408448;
0??????=0.6&#3627408448;
02+0.4&#3627408448;
01≥0.4&#3627408448;
02
&#3627408448;
0??????=0.647.4+0.437.4≥0.447.4=13.5&#3627408472;&#3627408449;&#3627408474;≥19.0&#3627408472;&#3627408449;&#3627408474;
M
OE= 19.0 kNm

Example 4: Design of Slender Column Bent
About Minor Axis
Second Order Moment, M
2
&#3627408448;
2=&#3627408449;
??????&#3627408465;&#3627408466;
2=1200×0.0484=&#3627409363;&#3627409366;.&#3627409359;&#3627408524;&#3627408501;&#3627408526;
&#3627408466;
2=

&#3627408473;
&#3627408479;&#3627408473;&#3627408476;
2
&#3627408464;
=
2.84×10
−5
×4130
2
10
=48.4mm = 0.0484 m
l
o= 4130 mm c= 10
&#3627408473;
&#3627408479;
=&#3627408446;
&#3627408479;&#3627408446;
??????
&#3627408473;
&#3627408479;
&#3627408476;
=1×1.20×2.37×10
−5
=2.84×10
−5
Effective depth to the minor axis, d= 250 –30 –6 –(20/2) = 204 mm
??????
&#3627408531;=
&#3627408527;
&#3627408534;−&#3627408527;
&#3627408527;&#3627408534;−&#3627408527;&#3627408515;&#3627408514;&#3627408525;
=&#3627409359;(&#3627408514;&#3627408532;&#3627408532;&#3627408534;&#3627408526;&#3627408518;&#3627408517;)<&#3627409359;
&#3627408446;
??????=1+????????????
&#3627408466;&#3627408467;≥1=1+(0.128×1.54)=1.20
??????
&#3627408466;&#3627408467;=
??????&#3627408448;&#3627408476;??????&#3627408478;&#3627408477;
&#3627408448;
&#3627408476;??????&#3627408465;
=0.67×2.3=1.54 
&#3627408448;&#3627408476;??????&#3627408478;&#3627408477;
&#3627408448;
&#3627408476;??????&#3627408465;
=0.67(assumed)
(, t
o)= 2.3 (Fig. 3.1: EN 1992-1-1)
??????=0.35+
&#3627408467;
&#3627408464;&#3627408472;
200

??????
150
=0.35+
25
200

52
150
=0.128
&#3627408473;
&#3627408479;&#3627408476;
=

&#3627408467;
&#3627408486;&#3627408465;
??????&#3627408480;
0.45&#3627408465;
=

0.87×500
200000
0.45×204
=2.37×10
−5

Class R
RH = 80%
Age = 3 days2
3
4
2.3
5
1
Example 4: Design of Slender Column Bent
About Minor Axis

Example 4: Design of Slender Column Bent
About Minor Axis
&#3627408449;
??????&#3627408465;∙&#3627408466;
&#3627408476;=1200×0.020=&#3627409360;&#3627409362;&#3627408524;&#3627408501;&#3627408526;
&#3627408466;
&#3627408476;=&#3627408474;&#3627408462;&#3627408485;

30
,20&#3627408474;&#3627408474;=&#3627408474;&#3627408462;&#3627408485;
300
30
,20&#3627408474;&#3627408474;=20&#3627408474;&#3627408474;=0.020&#3627408474;
&#3627408500;
??????&#3627408517;=&#3627408526;&#3627408514;&#3627408537;&#3627408500;
&#3627409358;&#3627409360;,&#3627408500;
&#3627409358;??????+&#3627408500;
&#3627409360;,&#3627408500;
&#3627409358;&#3627409359;+&#3627409358;.&#3627409363;&#3627408500;
&#3627409360;,&#3627408501;
??????&#3627408517;∙&#3627408518;
&#3627408528;
47.4 kNm
77.0 kNm 66.4 kNm 24 kNm
&#3627408500;
??????&#3627408517;=&#3627409365;&#3627409365;.&#3627409358;&#3627408524;&#3627408501;&#3627408526;

Example 4: Design of Slender Column Bent
About Minor Axis
Reinforcement
&#3627408465;
2=&#3627408464;+∅
&#3627408473;??????&#3627408475;&#3627408472;+
∅&#3627408463;&#3627408462;&#3627408479;
2
=30+6+
20
2
=46mm
&#3627408465;
2
&#3627408521;
=
46
&#3627409360;&#3627409363;&#3627409358;
=0.18≅0.20
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1200×10
3
300×250×25
=0.64
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
77.0×10
6
300×250
2
×25
=0.16
From design chart:
&#3627408436;
&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.72 K
r= 0.58
&#3627408448;
0??????+&#3627408448;
2=19+0.58×58.1=52.6kNm
&#3627408448;
01+0.5&#3627408448;
2=37.4+0.50.58×58.1=54.2kNm
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
54.2×10
6
300×250
2
×25
=0.12
First
assumption,
K
r= 1.0
54.2 kNmmax
0.72
K
r= 0.58

Example 4: Design of Slender Column Bent
About Minor Axis
Reinforcement
&#3627408465;
2=&#3627408464;+∅
&#3627408473;??????&#3627408475;&#3627408472;+
∅&#3627408463;&#3627408462;&#3627408479;
2
=30+6+
20
2
=46mm
&#3627408465;
2
&#3627408521;
=
46
&#3627409360;&#3627409363;&#3627409358;
=0.18≅0.20
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1200×10
3
300×250×25
=0.64
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
77.0×10
6
300×250
2
×25
=0.16
From design chart:
&#3627408436;
&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.72 K
r= 0.58
&#3627408448;
0??????+&#3627408448;
2=19+&#3627409358;.&#3627409363;&#3627409366;×58.1=52.6kNm
&#3627408448;
01+0.5&#3627408448;
2=37.4+0.5&#3627409358;.&#3627409363;&#3627409366;×58.1=54.2kNm
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
&#3627409363;&#3627409362;.&#3627409360;×10
6
300×250
2
×25
=0.12
First
assumption,
K
r= 1.0
54.2 kNmmax
0.55
K
r= 0.58

Example 4: Design of Slender Column Bent
About Minor Axis
From design chart:
&#3627408436;&#3627408480;&#3627408467;&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.45 K
r= 0.48
&#3627408448;
0??????+&#3627408448;
2=19+0.48×58.1=46.8kNm
&#3627408448;
01+0.5&#3627408448;
2=37.4+0.50.48×58.1=51.3kNm
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
51.3×10
6
300×250
2
×25
=0.11
From design chart:
&#3627408436;
&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.40 K
r= 0.45
??????
&#3627408480;=
0.40&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
&#3627408467;
&#3627408486;&#3627408472;
=
0.40×300×250×25
500
=&#3627409359;&#3627409363;&#3627409358;&#3627409358;mm
2
??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.10&#3627408449;
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;
=
0.10×1200×10
3
0.87×500
=&#3627409360;&#3627409365;&#3627409364;mm
2
or 0.002??????
&#3627408464;=150mm
2
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;=0.04×250×300=&#3627409361;&#3627409358;&#3627409358;&#3627409358;mm
2
Provide 4H20 + 2H16 (A
s= 1659 mm
2
)
51.3 kNmmax

Example 4: Design of Slender Column Bent
About Minor Axis
From design chart:
&#3627408436;&#3627408480;&#3627408467;&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.45 K
r= 0.48
&#3627408448;
0??????+&#3627408448;
2=19+&#3627409358;.&#3627409362;&#3627409366;×58.1=46.8kNm
&#3627408448;
01+0.5&#3627408448;
2=37.4+0.5&#3627409358;.&#3627409362;&#3627409366;×58.1=51.3kNm
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
51.3×10
6
300×250
2
×25
=0.11
From design chart:
&#3627408436;
&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.40 K
r= 0.45
??????
&#3627408480;=
0.40&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
&#3627408467;
&#3627408486;&#3627408472;
=
0.40×300×250×25
500
=&#3627409359;&#3627409363;&#3627409358;&#3627409358;mm
2
??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.10&#3627408449;
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;
=
0.10×1200×10
3
0.87×500
=&#3627409360;&#3627409365;&#3627409364;mm
2
or 0.002??????
&#3627408464;=150mm
2
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;=0.04×250×300=&#3627409361;&#3627409358;&#3627409358;&#3627409358;mm
2
Provide 4H20 + 2H16 (A
s= 1659 mm
2
)
51.3 kNmmax

Example 4: Design of Slender Column Bent
About Minor Axis
Links

links, min= the larger of:
i.0.25 16 mm = 4 mmor
ii.6 mm
Use 
links= 6 mm
S
max= the lesser of:
i.20 (16 mm) = 320 mm or
ii.the lesser dimension of the column = 250 mm or
iii.400 mm
Use S
max= 250 mm
Provide H6-250
At section 300 mm below & above beam & at lap joints, S
max= 0.6 250 mm = 150 mm
Provide H6-150
250
300
H6
-
250
H6
-
150
y y

Biaxial Bending
•EC2: Clause 5.8.9 states that separate design in each principal
direction (disregarding biaxial bending) may be the first step. NO
further checkingis necessary if:
(a)
??????
&#3627408486;
??????
&#3627408487;
≤2 and
??????
&#3627408487;
??????
&#3627408486;
≤2
(b)
&#3627408466;&#3627408486;
ℎ&#3627408466;&#3627408478;
&#3627408466;&#3627408487;
&#3627408463;&#3627408466;&#3627408478;
≤0.2or
&#3627408466;&#3627408487;
&#3627408463;&#3627408466;&#3627408478;
&#3627408466;&#3627408486;
ℎ&#3627408466;&#3627408478;
≤0.2
b, h= Width and depth of section
&#3627408463;
&#3627408466;&#3627408478;=??????
&#3627408486;12& ℎ
&#3627408466;&#3627408478;=??????
&#3627408487;12for an equivalent rectangular section

y, 
z= Slenderness ratio with respect to y-and z-axis, respectively
&#3627408466;
&#3627408486;=
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408449;
??????&#3627408465;
: Eccentricity along y-axis
&#3627408466;
&#3627408487;=
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408449;??????&#3627408465;
: Eccentricity along z-axis
M
ed,y= Design moment about y-axis including second order moment
M
ed,z= Design moment about z-axis including second order moment
N
Ed= Design axial load in the respective load combination

Biaxial Bending
z
y
h
b
N
Ed
e
y
e
z
i
y
i
y
i
z i
z

Biaxial Bending
•If the above conditions are NOTfulfilled, biaxiallybent columns
may be designed to satisfy the following simplified criterion:
&#3627408500;
??????&#3627408517;,&#3627408539;
&#3627408500;
??????&#3627408517;,&#3627408539;
&#3627408514;
+
&#3627408500;
??????&#3627408517;,&#3627408538;
&#3627408500;
??????&#3627408517;,&#3627408538;
&#3627408514;
≤&#3627409359;.&#3627409358;
M
Rd,y= Moment resistance in y-axis
M
Rd,z= Moment resistance in z-axis
a= Exponent;
For circular& ellipticalcross section, a= 2
For rectangularcross section:
N
Rd= A
cf
cd+ A
sf
yd
A
c= Gross area of concrete section
A
s= Area of longitudinal reinforcement
N
Ed/N
Rd 0.1 0.7 1.0
a 1.0 1.5 2.0

Biaxial Bending
Adaptation from BS 8110
Column may be designed for a single axis bending BUTwith an
increased moment:
(a) If
&#3627408448;
??????&#3627408465;,&#3627408487;
ℎ′

&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408463;′
then&#3627408448;
??????&#3627408465;&#3627408487;

=&#3627408448;
??????&#3627408465;,&#3627408487;+??????
ℎ′
&#3627408463;′
&#3627408448;
??????&#3627408465;,&#3627408486;
(b) If
&#3627408448;
??????&#3627408465;,&#3627408487;
ℎ′
<
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408463;′
then&#3627408448;
??????&#3627408465;&#3627408486;

=&#3627408448;
??????&#3627408465;,&#3627408486;+??????
&#3627408463;′
ℎ′
&#3627408448;
??????&#3627408465;,&#3627408487;
??????=1−
&#3627408449;
??????&#3627408465;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
(0.3 1.0)
hh’
b
b’
z z
y
y
M
Edz
M
Edy

Example 5
DESIGN OF NON-SLENDER
COLUMN BENT ABOUT BOTH
AXIS

Classification: Braced non-slender column
Concrete, f
ck: 25 N/mm
2
Reinforcement, f
yk: 500 N/mm
2
Effective Lengthl
oz: 3.17 m
l
oy: 3.00 m
Slenderness ratio
z: 27.7

y: 34.2
Bar Size: 
bar= 25 mm, 
links= 6 mm
Nominal cover: 30 mm
Example 5: Design of Non-Slender Column
Bent About Both Axis
M
z
z
z
y y
300
350
Cross Section
M
y N
Ed= 1800 kN
M
z= 55 kNm
M
y= 32 kNm

Example 5: Design of Non-Slender Column
Bent About Both Axis
DESIGN MOMENT
Imperfection moment, &#3627408448;
??????&#3627408474;&#3627408477;=&#3627408449;
??????&#3627408465;∙&#3627408466;
??????=&#3627408449;
??????&#3627408465;∙
&#3627408473;&#3627408476;
400
&#3627408448;
??????&#3627408474;&#3627408477;,&#3627408487;=1800×
3.70
400
=16.7kNm
&#3627408448;
??????&#3627408474;&#3627408477;,&#3627408486;=1800×
3.00
400
=13.5kNm
Design moment including the effect of imperfection:
M
Ed,z= 55 + 16.7 = 71.7 kNm
M
Ed,y= 32 + 13.5 = 45.5 kNm

Example 5: Design of Non-Slender Column
Bent About Both Axis
CHECK BIAXIAL MOMENT
&#3627408466;
&#3627408487;=
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408449;
??????&#3627408465;
=
71.7×10
6
1800×10
3
=40mm
&#3627408466;
&#3627408486;=
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408449;
??????&#3627408465;
=
45.5×10
6
1800×10
3
=25mm
&#3627408466;
&#3627408486;

&#3627408466;
&#3627408487;
&#3627408463;
=
25
350
40
300
=0.54>0.2
&#3627408466;
&#3627408487;
&#3627408463;
&#3627408466;
&#3627408486;

=
40
300
25
350
=1.84>0.2
Check Biaxial Bending
??????
&#3627408486;
??????
&#3627408487;
=
34.2
27.7
=1.2<2
??????
&#3627408487;
??????
&#3627408486;
=
27.7
34.2
=0.8<2
Ignore Biaxial Bending
Check Biaxial Bending

Example 5: Design of Non-Slender Column
Bent About Both Axis
REINFORCEMENT DESIGN
Effective depth:h’= 350 –30 –6 –(0.5 25) = 301.5 mm
b’= 300 –30 –6 –(0.5 25) = 251.5 mm
&#3627408448;
??????&#3627408465;,&#3627408487;


=
71.7×10
6
301.5
=238kN
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408463;

=
45.5×10
6
251.5
=181kN
Since
&#3627408448;
??????&#3627408465;,&#3627408487;


>
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408463;

&#3627408448;
??????&#3627408465;,&#3627408487;

=&#3627408448;
??????&#3627408465;,&#3627408487;+??????
ℎ′
&#3627408463;′
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408449;
??????&#3627408465;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1800×10
3
300×350×25
=0.69
??????=1−
&#3627408449;
??????&#3627408465;
&#3627408463;ℎ&#3627408467;&#3627408464;&#3627408472;
=1−0.69=0.31 0.30
&#3627408448;
??????&#3627408465;,&#3627408487;

=71.7+0.31
301.5
251.5
45.5=&#3627409366;&#3627409366;.&#3627409366;kNm

Example 5: Design of Non-Slender Column
Bent About Both Axis
REINFORCEMENT DESIGN
&#3627408465;
2=&#3627408464;+∅
&#3627408473;??????&#3627408475;&#3627408472;+

&#3627408463;&#3627408462;&#3627408479;
2
=30+6+
25
2
=48.5mm
&#3627408465;
2

=
48.5
350
=0.14≈0.15
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1800×10
3
300×350×25
=0.69
&#3627408448;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=
88.8×10
6
300×350
2
×25
=0.10
From design chart:
&#3627408436;&#3627408480;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=0.48 ??????
&#3627408480;=
0.48&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
&#3627408467;
&#3627408486;&#3627408472;
=
0.48×300×350×25
500
=&#3627409360;&#3627409363;&#3627409360;&#3627409358;mm
2
??????
&#3627408480;,&#3627408474;??????&#3627408475;=
0.10&#3627408449;
??????&#3627408465;
&#3627408467;
&#3627408486;&#3627408465;
=
0.10×1800×10
3
0.87×500
=&#3627409362;&#3627409359;&#3627409362;mm
2
or 0.002??????
&#3627408464;=210mm
2
??????
&#3627408480;,&#3627408474;&#3627408462;&#3627408485;=0.04??????
&#3627408464;=0.04×300×350=&#3627409362;&#3627409360;&#3627409358;&#3627409358;mm
2
Provide 4H25 + 2H20 (A
s= 2592 mm
2
)
0.48

Example 5: Design of Non-Slender Column
Bent About Both Axis
LINKS

links, min= the larger of:
i.0.25 25 mm = 6.3 mmor
ii.6 mm
Use 
links= 8 mm
S
max= the lesser of:
i.20 (20 mm) = 400 mm or
ii.the lesser dimension of the column = 300 mm or
iii.400 mm
Use S
max= 300 mm
Provide H8-300
At section 300 mm below & above beam & at lap joints, S
max= 0.6 300 mm = 180 mm
Provide H8-175
300
350
H8
-
300
H8
-
175
z
z

Example 5: Design of Non-Slender Column
Bent About Both Axis
CHECK BIAXIAL BENDING
Steel Area:
All: 4H25 + 2H20 A
s= 2592 mm
2
z-z: 4H25 + 2H20 A
s,z= 2592 mm
2
y-y: 4H25 + 0H20 A
s,y= 1964 mm
2
&#3627408465;2,&#3627408487;

=
48.5
350
=0.14 &
&#3627408465;2,&#3627408486;
&#3627408463;
=
48.5
300
=0.16
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1800×10
3
300×350×25
=0.69
??????
&#3627408480;,&#3627408487;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
2592×500
300×350×25
=0.49
&#3627408448;
&#3627408453;&#3627408465;,&#3627408487;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=0.10
M
Rd,z= 0.10 300 350
2
25 10
-6
= 91.9 kNm
0.49
0.10

Example 5: Design of Non-Slender Column
Bent About Both Axis
CHECK BIAXIAL BENDING (continued)
??????
&#3627408480;,&#3627408486;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1964×500
350×300×25
=0.37
&#3627408448;
&#3627408453;&#3627408465;,&#3627408486;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=0.07
M
Rd,z= 0.07 350 300
2
25 10
-6
= 55.1 kNm
N
Rd= A
cf
cd+ A
sf
yd= 0.567f
ckA
c+ 0.87f
ykA
s
= (0.567 25 300 350) + (0.87 500 2592)
= 2616 kN
&#3627408449;
??????&#3627408465;
&#3627408449;
??????&#3627408465;
=
1800
2616
=0.69 a= 1.49 (from Table)
Imperfection only be taken in one direction where they have the most unfavourableeffects:
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408462;
+
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408462;
=
71.7
91.9
1.49
+
&#3627409361;&#3627409360;
55.1
1.49
=&#3627409359;.&#3627409362;&#3627409362;>&#3627409359;.&#3627409358;FAIL
0.37
0.07

Example 5: Design of Non-Slender Column
Bent About Both Axis
NEW ARRANGEMENT OF REINFORCEMENT
Steel Area:
All: 4H25 + 4H20 A
s= 3221 mm
2
z-z: 4H25 + 2H20 A
s,z= 2592 mm
2
y-y: 4H25 + 2H20 A
s,y= 2592 mm
2
&#3627408465;2,&#3627408487;

=
48.5
350
=0.14 &
&#3627408465;2,&#3627408486;
&#3627408463;
=
48.5
300
=0.16
&#3627408449;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
1800×10
3
300×350×25
=0.69
??????
&#3627408480;,&#3627408487;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
2592×500
300×350×25
=0.49
&#3627408448;
&#3627408453;&#3627408465;,&#3627408487;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=0.10
M
Rd,z= 0.10 300 350
2
25 10
-6
= 91.9 kNm
0.49
0.10

Example 5: Design of Non-Slender Column
Bent About Both Axis
NEW ARRANGEMENT OF REINFORCEMENT
??????
&#3627408480;,&#3627408486;&#3627408467;
&#3627408486;&#3627408472;
&#3627408463;ℎ&#3627408467;
&#3627408464;&#3627408472;
=
2592×500
350×300×25
=0.49
&#3627408448;
&#3627408453;&#3627408465;,&#3627408486;
&#3627408463;ℎ
2
&#3627408467;
&#3627408464;&#3627408472;
=0.10
M
Rd,z= 0.10 350 300
2
25 10
-6
= 78.8 kNm
N
Rd= A
cf
cd+ A
sf
yd= 0.567f
ckA
c+ 0.87f
ykA
s
= (0.567 25 300 350) + (0.87 500 3221)
= 2889 kN
&#3627408449;
??????&#3627408465;
&#3627408449;
??????&#3627408465;
=
1800
2889
=0.62 a= 1.44 (from Table)
Imperfection only be taken in one direction where they have the most unfavourableeffects:
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408448;
??????&#3627408465;,&#3627408487;
&#3627408462;
+
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408448;
??????&#3627408465;,&#3627408486;
&#3627408462;
=
71.7
91.9
1.44
+
&#3627409361;&#3627409360;
78.8
1.44
=&#3627409358;.&#3627409367;&#3627409365;≤&#3627409359;.&#3627409358;PASS
0.49
0.10

Example 5: Design of Non-Slender Column
Bent About Both Axis
H8
-
300
H8
-
175
300
350
z
z
y y