Lecture 4 for cognitive interaction robo

MohamedAdel599535 6 views 20 slides Aug 10, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

in field Robotics


Slide Content

Respiration
1
•Bodycellsandtissuesneedoxygentolive.
•Respirationistheprocessthroughwhichtheoxygenneededfor
livingcellsisenteredintothelungsandthencirculated
throughoutthebody.
•Ithastwostages:
‒Inhalation
‒Exhalation

Respiration Cycle
2
Duringtheinhalation/exhalationcycle:
•oxygeniscarriedfromthelungsand
absorbedbytheredbloodcells(RBC).
•Hemoglobin(Hb)istheproteinthatcarries
oxygenintheRBCsandtransportsit
throughoutthebody.
•Theheartpumpsoxygenatedhemoglobin
(HbO
2)fromthelungstothewholebody
cellsandtissuesthroughthecircularity
system,andreceivesthedeoxygenated
Hbandpumpsittowardsthelungsagain
tobeoxygenated.

Cell Respiration Formula
3
•Thisformuladescribesthebiochemicalprocessin
whichthecellsofthebodyobtainenergyby
combiningoxygenandglucose,resultinginthe
releaseofcarbondioxide,water,andATP(Adenosine
Tri-Phosphate)
•ATPistheprimaryenergycarrierinlivingbeings.

Respiration Rate
4
•Therespirationrateisthenumberof
inhalation/exhalationcyclesinaminute,definedas
breathsperminuteandexpressedasBPM.
•Normalrespirationrateforadulthealthypersonsat
restrangesfrom12to20BPM,
•Foranewborn(<1year),itrangesfrom30to40
BPM.
•Thelowerorhigherrespirationrate,whileresting,is
consideredasbeingabnormal.

Respiration Rate Measurement
5
Respirationratemeasurementisachievedthrougheither
contactorcontactlessmethods.
1)Contactmeasurement
•Aphysicalelectronicsensorisattachedtothebody
skinortiedtothepatientclothestosensethe
motionofthechest.
•Theresultingmotionsignalisthenprocessedto
extracttherespirationrate.
•Thesemethodsarenotappropriateinsomecases
suchassensitiveorburnedskin,orforpremature
babies.
•Inaddition,contactsensorsarelessconvenient
andmoreexpensive.

Respiration Rate Measurement
6
2)Contactlessmeasurement
•Contactlessrespirationmethodsinvolvecomputervisiontechniques.
•Someexamplesincludethetrackingofcontractionandexpansionof
chestandabdomenregionwitheachinhalation/exhalationcycle.
•Also,Trackingoftemperaturevariationsaroundthenoseandmouth,
causedbyairflowmovementthatcouldbecapturedusingathermal
camera.
•Contactlessrespirationratemonitoringisfavorabletoovercomethe
issuesrelatedtoattachingsensorstosensitiveorburnedskin,or
tyinguncomfortablesensorstoclothes.
•Inaddition,contactlesstechniquesarepropersolutionsforsleeping-
relatedmonitoring.

RespirationSignal
7
Thefigurebelowshowsasampleofrespiratorysignalacquired
throughcomputervisionapproach.Thepeaksinthesignalmaybe
usedtoindicatebreathingcycles.

Application
8
•Implementacomputervision-basedapproachtoplotthe
breathingpatternforahumanduringhissleep.
Youcandownloadadatasetforthistaskfrom:
https://figshare.com/articles/dataset/sleep_dataset_zip/5518996/2

Face Recognition
9
•Faceisperhapsthemostcommonandfamiliarbiometricfeature.
•Thebroaduseofdigitalcamerasandsmartphonesmadefacial
imageseasytoproduceeveryday.
•Theseimagescanbeeasilydistributedandexchangedbyrapidly
establishedsocialnetworkssuchasFacebookandTwitter.
Face images

Face Recognition
10
•Thehumanfaceisnotanidealmodalitycomparedtoother
biometrictraits.
•Itislessprecisethanotherbiometricmodalitiessuchasirisor
fingerprint.
•Itcanpotentiallybeinfluencedbycosmetics,disguises,andlighting.
•However,thefacehastheadvantagesthatmakeitoneofthemost
favoredbiometriccharacteristicsforidentityrecognition.
-Naturalcharacter
-Nonintrusive
-Lesscooperation

Face Recognition History
11

Recent Advancement
12
•Initsnewupdates,Appleintroducedafacialrecognitionapplicationwhere
itsimplementationhasextendedtoretailandbanking.
•MastercarddevelopedtheSelfiePay,afacialrecognitionframeworkfor
onlinetransactions.
•From2019,peopleinChinawhowanttobuyanewphonewillnowconsent
tohavetheirfacescheckedbytheoperator.
•Chinesepoliceusedasmartmonitoringsystembasedonlivefacial
recognition;usingthissystem,theyarrestedasuspectof“economiccrime”
ataconcertwherehisface,listedinanationaldatabase,wasidentifiedina
crowdof50,000persons.
Today,facialrecognitiontechnologyadvancementhasencouragedmultiple
investmentsincommercial,industrial,andgovernmentalapplications.
Forexample:

Main Steps in Face Recognition Systems
13
Automatedfacerecognitionincludesthreekeysteps:
(1)Facedetection
(2)Extractionoffeatures
(3)Classification

Main Steps in Face Recognition Systems
14
1)Facedetection
Itisthefirststepintheautomatedfacerecognitionsystem.Itusually
determineswhetherornotanimageincludesaface(s).Ifitdoes,its
functionistotraceoneorseveralfacelocationsinthepicture.
2)Featureextraction
Thisstepconsistsofextractingfromthedetectedfaceafeaturevector
namedthesignature,whichmustbeenoughtorepresentaface.
3)Classification
•Canbeeitherverificationoridentification.
•Verificationrequiresmatchingonefacetoanothertoauthorizeaccessto
arequestedidentity.
•Identificationcomparesafacetoseveralotherfacesthataregivenwith
severalpossibilitiestofindtheface’sidentity.

Facial Landmarks
15
Afterdetectionofthefaceregioninthefirststep,whichresultsa
boundingboxthatsurroundthefaceintheimage,anumberof
featurepoints(landmarks)aredetermined(manuallyor
automatically)insidetheboundingbox.
Thereareusuallytwotypesoffaciallandmarks:
1)thefacialkeypoints:Thefacialkeypointsarethedominant
landmarksonface,suchastheeyecorners,nosetip,mouth
corners,etc.
2)interpolatedlandmarks:Theinterpolatedlandmarkpointseither
describethefacialcontourorconnectthekeypoints

Face Database
16
BioID:20landmarksareannotated
ibug:68landmarksareannotated
Heledominantn:194landmarksareannotated
MediaPipe:468landmarksareannotated

Face Recognition System
17
Duringaregistrationofanewface,anumberoflandmarksare
determinedautomaticallyormanually,andtheirlocationsarestored
forfuturematching.Theselandmarksarecalledgroundtruth
landmarks.
Duringvalidation,thesameprocedureisfollowedtoextractthe
landmarksandtheirlocations.
Amatchingscoreiscomputedbetweentheextractedlandmarksand
groundtruthlandmarks.
Thematchingscoredeterminesthedistancebetweeneach
landmarkanditscorrespondentgroundtruthlandmark.
Basedonthematchingscore,thetestedfaceimageisacceptedor
rejected.

Matching Score
18
•Thesimplestcomparisonisarootmeansquarederror(RMSE)assessment;
wheretheaveragedistancebetweeneachoftheNpredictedlandmarks
(&#3627408485;
??????
??????
,&#3627408486;
??????
??????
)andthecorresponding‘groundtruth’(&#3627408485;
??????
??????
,&#3627408486;
??????
??????
)iscalculatedonaper
landmarkbasis.
•Landmarksthatarepoorlypredictedwillbepositionedfaroftheir
correspondinggroundtruthlocationsandthuscontributetoincreasingthe
RMSEvalue.
&#3627408453;&#3627408448;&#3627408454;??????=
1
&#3627408449;

??????=1
??????
&#3627408485;
??????
??????
−&#3627408485;
??????
??????
2
+&#3627408486;
??????
??????
−&#3627408486;
??????
??????
2

Applications
19
SolveApplication(1)anduploadittothecourseClassroom

20