Lecture-6 (Flexural Formula).pptx

983 views 28 slides Nov 10, 2022
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Flexural Formula
Mechanics of solid (MOS)
Stree strain
Civil engineering


Slide Content

Flexural Stresses and Flexural Formula By Dr. Salah Uddin

Subject : Mechanics of Solids-I Understand the analysis of bending stresses in beams

After the end of this lesson students will able to; State the theory of simple bending. Explain bending stresses. Identify position of neutral axis. Define moment of resistance. Define section modulus. Solve problems related to bending stresses in beam.

If a specific length of a beam is subjected to a c on s t a n t bend i n g mo m e n t & shea r f o r ce is z e r o , then the s t r esses s e t u p in th a t l e n g th o f the be a m a r e kn o wn as b end in g s t r esse s . Th e l en g th o f the be a m un d er c on st a n t be n d i ng mom e n t is sa id t o b e in p ur e bending. St r esses in B eams – Bendi n g and Shear

Internal bending moment causes beam to deform Top fibers in compression, bottom in tension. N e ut r al sur f ace – n o c h an g e in len g t h . N e ut r al Axis – L i n e of i n t e r se c ti o n o f n e ut r al sur f a c e with the t r an s v e r se se c ti on. All c r os s - sect i on s r em a in p l ane and p e rp e nd i cu la r t o l ong itud i nal a x i s. St r esses in B eams – Bendi n g and Shear

A s su m p t i on s in s i mp l e (pu r e) bend i n g theory: M at erial o f bea m is h om o g enous and i s o t r o p ic (same c omp o s iti o n & c on st a n t E in all d i r e c ti on s ). Y oun g ’ s modulus is c on s t a n t in c omp r ession and t ension. T r an s v e r se se c ti o n which a r e p l ane b e f o r e bend i n g r em a in p lain a f t er bend i n g ( Elimi n at e e f f e c ts o f s t r ai n s in o ther d i r e c ti on). B e am is i n itiall y straight, and all l on g itud ina l f il am e n ts bend in ci r cula r a r cs. Ra d i u s o f c u r v a tu r e is l a rg e c ompa r ed with d imens io n of c r o s s sect i ons. E ach l a y er o f the beam is f r ee t o e xp a n d o r c o n t r ac t . St r esses in B eams – Bendi n g and Shear

Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e Du e t o a c ti o n of bend i n g , the l e n g t h dx wi l l b e d e f ormed as s h o wn i n t h e f ig u r e (b ) Consider a small length dx of a beam subjected to a simple bending as shown in the figure (a)

Du e t o the dec r ease i n len g th of the l a y e r s abo v e , the s e l a y e r s will b e subjec t ed to c omp r ess i v e s t r esse s . Du e t o the i nc r ease i n len g th of the l a y e r s below , the s e l a y e r s will b e subjec t ed to t ens i le s t r esse s .   The amou n t b y wh i c h a l a y er i nc r eases or dec r eas e s i n len g th, depe n d s u po n the pos i t i on of the l a y er w . r . t . .   Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e

L e t, R = Radius of cu r v a tu r e of neu t r al l a y er N ’ -N ’ . θ = Angle subjec t ed a t O b y A ’B’ and C ’D’ p r oduc e d. y = D i s t ance f r om the neut r al l a y e r . Or igi na l l en g th of t h e l a y er F r om figu r e (b), Chan g e (In c r ease) in l en g th of t h e St r ain i n the l a y er E F = I n c r ea s e i n l en g th / origi na l l en g th Ac c o r d i n g t o li nea r ela s ti c i t y , , T h a t i s ,   Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e    

Th e s t r e ss es i n du c ed i n t h e l a y e r s of t h e bea m c r e a t e c omp r ess i v e and t en s i le f o r ces . Thes e f o r ces wi l l h a v e mome n t about N A . Th e t o t al mome n t o f these f o r ces about N A f o r a s e cti on i s kn o wn as mome n t of r es i st ance of th a t secti o n . Cons i de r a c r os s sect i o n of a bea m as show n D e rivat i o n o f R e l a tio n sh i p B e twe e n B e n d i n g Stress a n d R a d i us o f C urvatu r e (Mom en t o f R esistanc e o f a S ection)

D e rivat i o n o f R e l a tio n sh i p B e twe e n B e n d i n g Stress a n d R a d i us o f C urvatu r e (Mom en t o f R esistanc e o f a S ection) E u l e r – B e rn o u l l i B e n d i n g E q u a tion         Total moment of the forces on the section of the beam (or moment of resistance)     or    

Sect i o n Modu lu s (Z) It is the r a tio o f mome n t o f i nert i a o f a sect i on abo u t the n e ut r al a x is t o the d i st ance o f t he ou t ermo s t l a y er f r o m the n e ut r al a x i s. T hus , mome n t o f r esi s t an c e o f f e r ed b y the se c ti o n i s m a ximum when Z i s m a x imum. Hen c e, Z r ep r ese n ts the s t r en g th o f the se c ti on.   I = Mome n t o f Inerti a about neut r al a x i s. = D i s t ance o f the o u t ermo s t l a y er f r o m the neut r al a x i s.   Hence,  

Sect i o n Modu lu s (Z) 1 . Recta n g u la r Secti o n      

Sect i o n Modu lu s (Z) 2 . Recta n g u la r Holl o w Secti o n      

Sect i o n Modu lu s (Z) 3 . Circula r Section      

Sect i o n Modu lu s (Z) 4 . Circula r Hollo w Section      

P r ob lems A c a n t i l e v er of l e n g th 2 m f ai l s w he n a l oa d of 2 kN i s a pp l i ed a t the f r ee en d . I f the sect i o n of t h e beam i s 4 m m X 6 mm , f i n d the s t r ess a t the f ail u r e. So l ut i on : P r ob le m S k et c h:

L e t, σ m a x = St r ess a t f ail u r e (M a x imum s t r ess) S i nc e R i s no t gi v en, w e c annot use In s t ead, use OR   , wh e re   a n d,     He n c e ,    

P r ob lem A squa r e bea m i n sec t i o n a n d 2 m l on g i s s i mp l y s u ppor t ed a t the ends. Th e beam f ails when a p o i n t l oa d of 40 N i s app l ied a t the ce n t r e of the bea m . W h a t un i f orm l y d i s tr i bu t ed l oa d pe r m e t er len g th will b r eak a c a n til e v er of the sam e m a t erial 4 m m wi de , 60m m d e ep and 3 m l ong? So l ut i o n: Squa r e c / s. : 2 m m x 2 mm ; L = 2m ; W = 40 N R ec t angular c / s. : 4 m m x 6 mm ; L = 3m ; w = ? E qua t e the maxim u m s tress i n the two c ase s .  

M a x imum s t r ess i n bea m of squa r e c / s.: , whe r e  

M a x imum s t r ess i n bea m of r ec t angular c / s.: M = σ m a x x Z , whe r e M a x imum bend i n g mome n t f o r a c a n til e v er beam l oade d wi t h UDL f o r the e n t i r e spa n i s gi v en by M m ax = w L 2 / 2 He n ce, M m ax = M m ax = 450 w N-mm

P r ob lem A ti m ber beam of rectan g u l ar secti o n of l e ngth 8 m i s sim p l y supporte d . The beam c a r r i es a U. D . L . of 1 2 kN/m run over the en t ire le n gth and a p o i nt load o f 1 kN at 3m f r om t h e l eft support . If t h e depth i s two t i mes the wi d th and the stres s i n t he timber i s not t o exc e ed 8 N/mm 2 , find t he s uitable dime n sion s of the sectio n . Solution : Probl e m sk e tch

Gi v e n D a t a: F i n d the m a x imum bend i n g mome n t i n the beam and us e M = σ m a x x Z t o find b an d d .

Fin d t he react ion forces at the supports Fin d t he shea r force at all the points of in t ere st Fin d t he m axi m um bending m o m ent wher e S F is z ero . Shea r Fo r ces : F B = - R B = - 51750 N ; F C = +18250 N ; F A = +54250 N Shea r force cha nges i t s sign between B and C . Let D be the point wher e S F = 0. Let x be the dis t ance ( i n m ete rs) of t his point on the beam from B. By calculat i on, x = 4.3125 m

Fin d t he BM at D . Fin d t he Mo m ent of Iner t ia ( I ) or s ec t ion m odulus (Z) of t he bea m ’ s c r oss se ct i on Us e the equat i on, M = σ ma x x Z Hence, b = 275.5 m m d = 551 m m

Any Questions ?

Thank you 28