Flexural Formula
Mechanics of solid (MOS)
Stree strain
Civil engineering
Size: 530.58 KB
Language: en
Added: Nov 10, 2022
Slides: 28 pages
Slide Content
Flexural Stresses and Flexural Formula By Dr. Salah Uddin
Subject : Mechanics of Solids-I Understand the analysis of bending stresses in beams
After the end of this lesson students will able to; State the theory of simple bending. Explain bending stresses. Identify position of neutral axis. Define moment of resistance. Define section modulus. Solve problems related to bending stresses in beam.
If a specific length of a beam is subjected to a c on s t a n t bend i n g mo m e n t & shea r f o r ce is z e r o , then the s t r esses s e t u p in th a t l e n g th o f the be a m a r e kn o wn as b end in g s t r esse s . Th e l en g th o f the be a m un d er c on st a n t be n d i ng mom e n t is sa id t o b e in p ur e bending. St r esses in B eams – Bendi n g and Shear
Internal bending moment causes beam to deform Top fibers in compression, bottom in tension. N e ut r al sur f ace – n o c h an g e in len g t h . N e ut r al Axis – L i n e of i n t e r se c ti o n o f n e ut r al sur f a c e with the t r an s v e r se se c ti on. All c r os s - sect i on s r em a in p l ane and p e rp e nd i cu la r t o l ong itud i nal a x i s. St r esses in B eams – Bendi n g and Shear
A s su m p t i on s in s i mp l e (pu r e) bend i n g theory: M at erial o f bea m is h om o g enous and i s o t r o p ic (same c omp o s iti o n & c on st a n t E in all d i r e c ti on s ). Y oun g ’ s modulus is c on s t a n t in c omp r ession and t ension. T r an s v e r se se c ti o n which a r e p l ane b e f o r e bend i n g r em a in p lain a f t er bend i n g ( Elimi n at e e f f e c ts o f s t r ai n s in o ther d i r e c ti on). B e am is i n itiall y straight, and all l on g itud ina l f il am e n ts bend in ci r cula r a r cs. Ra d i u s o f c u r v a tu r e is l a rg e c ompa r ed with d imens io n of c r o s s sect i ons. E ach l a y er o f the beam is f r ee t o e xp a n d o r c o n t r ac t . St r esses in B eams – Bendi n g and Shear
Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e Du e t o a c ti o n of bend i n g , the l e n g t h dx wi l l b e d e f ormed as s h o wn i n t h e f ig u r e (b ) Consider a small length dx of a beam subjected to a simple bending as shown in the figure (a)
Du e t o the dec r ease i n len g th of the l a y e r s abo v e , the s e l a y e r s will b e subjec t ed to c omp r ess i v e s t r esse s . Du e t o the i nc r ease i n len g th of the l a y e r s below , the s e l a y e r s will b e subjec t ed to t ens i le s t r esse s . The amou n t b y wh i c h a l a y er i nc r eases or dec r eas e s i n len g th, depe n d s u po n the pos i t i on of the l a y er w . r . t . . Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e
L e t, R = Radius of cu r v a tu r e of neu t r al l a y er N ’ -N ’ . θ = Angle subjec t ed a t O b y A ’B’ and C ’D’ p r oduc e d. y = D i s t ance f r om the neut r al l a y e r . Or igi na l l en g th of t h e l a y er F r om figu r e (b), Chan g e (In c r ease) in l en g th of t h e St r ain i n the l a y er E F = I n c r ea s e i n l en g th / origi na l l en g th Ac c o r d i n g t o li nea r ela s ti c i t y , , T h a t i s , Der i v a ti o n o f R el a ti onsh ip B e t w een Bendi n g St r ess a n d Ra d i u s o f C u r v a tu r e
Th e s t r e ss es i n du c ed i n t h e l a y e r s of t h e bea m c r e a t e c omp r ess i v e and t en s i le f o r ces . Thes e f o r ces wi l l h a v e mome n t about N A . Th e t o t al mome n t o f these f o r ces about N A f o r a s e cti on i s kn o wn as mome n t of r es i st ance of th a t secti o n . Cons i de r a c r os s sect i o n of a bea m as show n D e rivat i o n o f R e l a tio n sh i p B e twe e n B e n d i n g Stress a n d R a d i us o f C urvatu r e (Mom en t o f R esistanc e o f a S ection)
D e rivat i o n o f R e l a tio n sh i p B e twe e n B e n d i n g Stress a n d R a d i us o f C urvatu r e (Mom en t o f R esistanc e o f a S ection) E u l e r – B e rn o u l l i B e n d i n g E q u a tion Total moment of the forces on the section of the beam (or moment of resistance) or
Sect i o n Modu lu s (Z) It is the r a tio o f mome n t o f i nert i a o f a sect i on abo u t the n e ut r al a x is t o the d i st ance o f t he ou t ermo s t l a y er f r o m the n e ut r al a x i s. T hus , mome n t o f r esi s t an c e o f f e r ed b y the se c ti o n i s m a ximum when Z i s m a x imum. Hen c e, Z r ep r ese n ts the s t r en g th o f the se c ti on. I = Mome n t o f Inerti a about neut r al a x i s. = D i s t ance o f the o u t ermo s t l a y er f r o m the neut r al a x i s. Hence,
Sect i o n Modu lu s (Z) 1 . Recta n g u la r Secti o n
Sect i o n Modu lu s (Z) 2 . Recta n g u la r Holl o w Secti o n
Sect i o n Modu lu s (Z) 3 . Circula r Section
Sect i o n Modu lu s (Z) 4 . Circula r Hollo w Section
P r ob lems A c a n t i l e v er of l e n g th 2 m f ai l s w he n a l oa d of 2 kN i s a pp l i ed a t the f r ee en d . I f the sect i o n of t h e beam i s 4 m m X 6 mm , f i n d the s t r ess a t the f ail u r e. So l ut i on : P r ob le m S k et c h:
L e t, σ m a x = St r ess a t f ail u r e (M a x imum s t r ess) S i nc e R i s no t gi v en, w e c annot use In s t ead, use OR , wh e re a n d, He n c e ,
P r ob lem A squa r e bea m i n sec t i o n a n d 2 m l on g i s s i mp l y s u ppor t ed a t the ends. Th e beam f ails when a p o i n t l oa d of 40 N i s app l ied a t the ce n t r e of the bea m . W h a t un i f orm l y d i s tr i bu t ed l oa d pe r m e t er len g th will b r eak a c a n til e v er of the sam e m a t erial 4 m m wi de , 60m m d e ep and 3 m l ong? So l ut i o n: Squa r e c / s. : 2 m m x 2 mm ; L = 2m ; W = 40 N R ec t angular c / s. : 4 m m x 6 mm ; L = 3m ; w = ? E qua t e the maxim u m s tress i n the two c ase s .
M a x imum s t r ess i n bea m of squa r e c / s.: , whe r e
M a x imum s t r ess i n bea m of r ec t angular c / s.: M = σ m a x x Z , whe r e M a x imum bend i n g mome n t f o r a c a n til e v er beam l oade d wi t h UDL f o r the e n t i r e spa n i s gi v en by M m ax = w L 2 / 2 He n ce, M m ax = M m ax = 450 w N-mm
P r ob lem A ti m ber beam of rectan g u l ar secti o n of l e ngth 8 m i s sim p l y supporte d . The beam c a r r i es a U. D . L . of 1 2 kN/m run over the en t ire le n gth and a p o i nt load o f 1 kN at 3m f r om t h e l eft support . If t h e depth i s two t i mes the wi d th and the stres s i n t he timber i s not t o exc e ed 8 N/mm 2 , find t he s uitable dime n sion s of the sectio n . Solution : Probl e m sk e tch
Gi v e n D a t a: F i n d the m a x imum bend i n g mome n t i n the beam and us e M = σ m a x x Z t o find b an d d .
Fin d t he react ion forces at the supports Fin d t he shea r force at all the points of in t ere st Fin d t he m axi m um bending m o m ent wher e S F is z ero . Shea r Fo r ces : F B = - R B = - 51750 N ; F C = +18250 N ; F A = +54250 N Shea r force cha nges i t s sign between B and C . Let D be the point wher e S F = 0. Let x be the dis t ance ( i n m ete rs) of t his point on the beam from B. By calculat i on, x = 4.3125 m
Fin d t he BM at D . Fin d t he Mo m ent of Iner t ia ( I ) or s ec t ion m odulus (Z) of t he bea m ’ s c r oss se ct i on Us e the equat i on, M = σ ma x x Z Hence, b = 275.5 m m d = 551 m m