lecture17-180515 for cmos analog circuit design.pdf

ajmunesyar 120 views 33 slides Apr 25, 2024
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Cmos analog circuit design


Slide Content

Lecture 17 – Temperature Stable References (5/15/18) Page 17-1
CMOS Analog Circuit Design © P.E. Allen - 2016
LECTURE 17 – TEMPERATURE STABLE REFERENCES
LECTURE ORGANIZATION
Outline
• Principles of temperature stable references
• Examples of temperature stable references
• Design of bias voltages for a chip
• Summary
CMOS Analog Circuit Design, 3
rd
Edition Reference
Pages 156-172

Lecture 17 – Temperature Stable References (5/15/18) Page 17-2
CMOS Analog Circuit Design © P.E. Allen - 2016
PRINCIPLES OF TEMPERATURE STABLE REFERENCES
Temperature Stable References
• The previous reference circuits failed to provide small values of temperature
coefficient although sufficient power supply independence was achieved.
• This section introduces a temperature stable reference that cancels a positive
temperature coefficient with a negative temperature coefficient. The technique is
sometimes called the bandgap reference although it has nothing to do with the bandgap
voltage.
Principle
VREF(T) = VPTAT(T) + K·VCTAT(T)
where
VPTAT(T) is a voltage that is proportional to
absolute temperature (PTAT)
VCTAT(T) is a voltage that is complimentary
to absolute temperature (CTAT)
and
K is a temperature independent constant that makes VREF(T) independent of
temperature

Lecture 17 – Temperature Stable References (5/15/18) Page 17-3
CMOS Analog Circuit Design © P.E. Allen - 2016
PTAT Voltage
The principle illustrated on the last slide requires perfectly linear positive and negative
temperature coefficients to work properly. We will now show a technique of generating
PTAT voltages that are linear with respect to temperature.
Implementation of a PTAT voltage:
VPTAT = VD = VD1 – VD2 = Vt ln





I1
Is1
- Vt ln





I2
Is2

= Vt ln





I1
I2

Is2
Is1
= V
t
ln







Is2
Is1
= V
t ln







A2
A1
=
kT
q
ln







A2
A1

if I1 = I2.

Therefore, if A2 = 10A1, VD at room temperature becomes,
VD =





k
q
ln





A2
A1
T =





1.381x10-23J/°K
1.6x10-19 Coul
ln(10) T = (+ 0.086mV/°C)T
 VPTAT = Vt ln





A2
A1

Lecture 17 – Temperature Stable References (5/15/18) Page 17-4
CMOS Analog Circuit Design © P.E. Allen - 2016
Psuedo-PTAT Currents
In developing temperature independent voltages, it is useful to show
how to generate PTAT currents. A straight-forward method is to
superimpose VPTAT across a resistor as shown:
Because R is always dependent on temperature, this current is called a pseudo-PTAT
current and is designated by IPTAT’.
When a pseudo-PTAT current flows through a second
resistor with the same temperature characteristics as the
first, it creates a new VPTAT voltage.
The new VPTAT voltage, VPTAT2 is equal to,
VPTAT2 =
R2
R1
VPTAT1
Differentiating with respect to temperature gives

dVPTAT2
dT
=
R2
R1






dR2
R2dT
-
dR1
R1dT
+
dVPTAT1
dT

Therefore, if the temperature coefficient of R1 and R2 are equal, then the temperature
dependence of VPTAT2 is the same as VPTAT1.

Lecture 17 – Temperature Stable References (5/15/18) Page 17-5
CMOS Analog Circuit Design © P.E. Allen - 2016
Pseudo-PTAT Currents - Continued
Pseudo-PTAT currents can be generated through the circuits below which use only
MOSFETs and pn junctions or MOSFETs, an op amp, and pn junctions.








In these circuits, I1 = I2 and the voltage across D1 is made equal to the voltage across the
series combination of R and D2 to create the pseudo-PTAT current,
IPTAT’ =
VD1 - VD2
R
=
kT
Rq
ln







A2
A1

where VGS1 = VGS2 for the MOSFET only version. Psuedo-PTAT current generator using
only MOSFETs and pn junctions.
V
DD
I
1
V
DD
I
2
+
-
V
GS1
D
1
D
2
A
1
A
2
M1 M2
M3
M4
+
-
V
GS2
RI
PTAT’
V
DD
M5
I
PTAT’
Psuedo-PTAT current generator using
MOSFETs, an op amp and pn junctions.
V
DD
I
1
V
DD
I
2
D
1
D
2
A
1
A
2
M1
M2
M3
RI
PTAT’
V
DD
I
PTAT’
100326-04
+-

Lecture 17 – Temperature Stable References (5/15/18) Page 17-6
CMOS Analog Circuit Design © P.E. Allen - 2016
CTAT Voltage
This becomes more challenging because a true CTAT voltage does not exist. The best
approach is to examine the pn junction (can be a diode or BJT).
The diode voltage can be written as


where

and where A and B are temperature independent constants,  is the temperature
coefficient for Is ( ≈ 3),  is the temperature coefficient for iD ( =1 for PTAT), and VBG
is the bandgap voltage of silicon (1.205V at 27°C).
The diode voltage as a function of temperature is,


Note that the term Vt(-)ln(T) is not linear with temperature and cannot completely
cancel the perfectly linear PTAT voltage.
v
D
=V
t
ln
i
D
I
s
æ
è
ç
ö
ø
÷=V
t
ln(i
D
)-V
t
ln(I
s
) I
s
=AT
g
exp
-V
BG
V
t
æ
è
ç
ö
ø
÷ and i
D
=BT
a v
D
(T)=V
CTAT
=V
t
ln(BT
a
)-V
t
lnAT
g
exp-
V
BG
V
t
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú=V
BG
-V
t
(g-a)ln(T)-V
t
ln(A/B)

Lecture 17 – Temperature Stable References (5/15/18) Page 17-7
CMOS Analog Circuit Design © P.E. Allen - 2016
Pseudo CTAT Currents
The circuits below show three ways of creating a pseudo CTAT current using negative
feedback:











The negative feedback loop shown causes the current designated as ICTAT’ to be,
ICTAT’ =
VBE
R
=
VD
R



I.M. Gunawan, G.C.M. Jeijer, J. Fonderie, and J.H. Huijsing, “A Curvature-Corrected Low-Voltage Bandgap Reference, IEEE J. Solid-state Circuits, vol. SC-28, No. 6, June
1993, pp. 677-670. V
DD
I
PTAT

+
-
V
BE
R
Q1
M2
M3
M4
M5
I
CTAT
’I
CTAT

+
-
V
D
R
M2
M3
M4
M5
M6
M1
V
DD
I
PTAT

I
CTAT
’I
CTAT

Generation of a pseudo CTAT current
using a bipolar transistor.
Generation of a pseudo CTAT current
using a diode.
120326-01
Generation of a pseudo CTAT current using
MOSFETs, an op amp and pn junctions.
V
DD
I
2
D
2
A
2
M1
M2
R
I
CTAT’
I
CTAT’
+-
I
PTAT

Lecture 17 – Temperature Stable References (5/15/18) Page 17-8
CMOS Analog Circuit Design © P.E. Allen - 2016
Temperature Independent Voltage References
Basic structures:






Series form:
VREF = IPTAT’R2 + VD =





R2
R1
VPTAT + VCTAT
Parallel form:
VREF = (IPTAT’ + ICTAT’)R3 =





R3
R1
VPTAT +





R3
R2
VCTAT =





R3
R2










R2
R1
VPTAT + VCTAT
To achieve temperature independence, VREF must be differentiated with respect to
temperature and set equal to zero. The resistor ratios and other parameters can be used
to achieve temperature independence.

Lecture 17 – Temperature Stable References (5/15/18) Page 17-9
CMOS Analog Circuit Design © P.E. Allen - 2016
Series Temperature Stable Voltage Source
Series Configuration:
From the circuit on the right, we get

Substituting for VPAT and VCTAT gives,

Differentiating with respect to T and setting T = T0 gives,

Equating the derivative to zero gives,

Substituting back gives,

At T = T0, assuming  = 3.2 and  = 1, the reference voltage is
VREF = VBG + Vt(-) = 1.205V + 0.057V = 1.262V (T0 = 27°C)
Because VREF ≈ VBG, this voltage reference is called the “bandgap reference”.
VDD
IPTAT’ =
VPTAT
R1
R2
+
-
VD =
VCTAT
+
-
VREF
131010-01 V
REF=I
PTAT'R
2+V
D=(R
2/R
1)V
PTAT+V
CTAT=KV
PTAT+V
CTAT V
REF=KV
tln(A
2/A
1)+V
BG-V
t(g-a)ln(T)-V
tln(A/B) dV
REF
dT
(T=T
0
)=Kln(A
2
/A
1
)
V
t0
T
0
-
V
t0
T
0
ln(A/B)-
V
t0
T
0
(g-a)ln(T
0
)-(g-a)
V
t0
T
0 Kln(A
2/A
1)-ln(A/B)=(g-a)[1+ln(T
0)] V
REF
=(g-a)V
t
[1+ln(T
0
)]+V
BG
-V
t
(g-a)ln(T)=V
BG
+(g-a)V
t
1+ln
T
0
T
æ
è
ç
ö
ø
÷
é
ë
ê
ù
û
ú

Lecture 17 – Temperature Stable References (5/15/18) Page 17-10
CMOS Analog Circuit Design © P.E. Allen - 2016
Series Temperature Stable Voltage Source
Eliminating the constants ln(A/B):
Express the pn junction voltage at a reference temperature, To, and T

and

Eliminating the ln(A/B) term gives,


Approximating the ln(T/To) term with a Taylor’s series expansion gives,


Substituting this into the above gives

v
D(T)=V
CTAT=V
BG-V
t(g-a)ln(T)-V
tln(A/B) v
D(T
o)=V
BG-V
to(g-a)ln(T
o)-V
toln(A/B) v
D
(T)=V
BG
-
T
T
o
V
BG
-v
D
(T
o
)[ ]-(g-a)V
t
ln
T
T
o
æ
è
ç
ö
ø
÷ ln
T
T
o
æ
è
ç
ö
ø
÷»
T-T
o
T
æ
è
ç
ö
ø
÷+
1
2
T-T
o
T
æ
è
ç
ö
ø
÷
2
+
1
3
T-T
o
T
æ
è
ç
ö
ø
÷
3
+ v
D
(T)=V
BG
-
T
T
o
V
BG
-v
D
(T
o
)[ ]-(g-a)V
t
T-T
o
T
o
æ
è
ç
ö
ø
÷-
(g-a)V
t
2
T-T
o
T
o
æ
è
ç
ö
ø
÷
2
-
(g-a)V
t
3
T-T
o
T
o
æ
è
ç
ö
ø
÷
3
+

Lecture 17 – Temperature Stable References (5/15/18) Page 17-11
CMOS Analog Circuit Design © P.E. Allen - 2016
Series Temperature Stable Voltage Source
Tuning V
REF (solving for K):
From the previous slide, let VCTAT be approximated as,


VREF can be written as,


Differentiating VREF with respect to temperature and setting T = To gives,



Solving for K gives,
K=
V
BG
-v
D
(T
o
)-(g-a)V
to
V
to
ln
A
2
A
1
æ
è
ç
ç
ö
ø
÷
÷
Þ R
2
=
V
BG
-v
D
(T
o
)-(g-a)V
to
I
PTAT
v
D
(T)=V
CTAT
»V
BG
-
T
T
o
V
BG
-v
D
(T
o
)[ ]-(g-a)V
t
T-T
o
T
o
æ
è
ç
ö
ø
÷ V
REF
=K×V
PTAT
+V
CTAT
»KV
t
ln
A
2
A
1
æ
è
ç
ö
ø
÷+V
BG
-
T
T
o
V
BG
-v
D
(T
o
)[ ]-(g-a)V
t
T-T
o
T
o
æ
è
ç
ö
ø
÷ dV
REF
dT
(T=T
o
)=
KV
to
T
o
ln
A
2
A
1
æ
è
ç
ö
ø
÷-
V
BG-v
D(T
o)
T
o
-
(g-a)V
to
T
o
=0

Lecture 17 – Temperature Stable References (5/15/18) Page 17-12
CMOS Analog Circuit Design © P.E. Allen - 2016
Example 17-1 – Temp. Independent Constant for Series and Parallel References
(a.) Design the ratio of R
2/R
1 for the series configuration if VCTAT = 0.6V and A
2/A
1 = 10
for room temperature (V
t = 0.026V). Assume  = 3.2 and  = 1. Find the value of VREF.

R2
R1
=
VGO - VCTAT + (-)Vt0
VPTAT
=
1.205 - 0.6 + 2.2(0.026)
0.026(2.3026)
= 11.05
VREF = 1.205 + 2.2(0.026) = 1.262V
If R
1 = 1k, then R
2 = 11.05k
(b.) For the parallel configuration find the values of R
2/R
1 and R
3/R
2 if VREF = 0.5V.
From (a.) we know that R
2/R
1 = 11.05. We also know that,
VREF =





R3
R1
VPTAT +





R3
R2
VCTAT =





R3
R2










R2
R1
VPTAT + VCTAT
= (R
3/R
2)[11.05ln(10)(0.026) + 0.6] = (R
3/R
2)1.262 = 0.5
 (R
3/R
2) = 0.3963
If R
1 = 1k, then R
2 = 11.05k and R
3 = 4.378k

Lecture 17 – Temperature Stable References (5/15/18) Page 17-13
CMOS Analog Circuit Design © P.E. Allen - 2016
Simple Brokaw Bandgap


Circuit:
The voltage across R2 is,
VR2 = VPTAT =Vt ln(N)
creating the PTAT current flowing through Q2.
The bandgap voltage, VBG, is,
V
BG
=
2R
1V
tln(N)
R
2
+V
BE1
The resistor divider R4-R5 “gains up” this voltage to
V
REF
=
R
4
+R
5
R
5
æ
è
ç
ö
ø
÷
2R
1
V
t
ln(N)
R
2
+V
BE1
é
ë
ê
ù
û
ú
The resistor R3 eliminates the impact of the base currents of Q1 and Q2
V
REF
'
=V
REF
+R
4
(I
B1
+I
B2
)-I
B2
R
3
2(R
4+R
5)R
1
R
2R
5
® R
3
=
R
2R
4R
5
R
1(R
4+R
5)


A.P. Brokaw, “A Simple Three-Terminal IC Bandgap Reference,” IEEE J. Solid-State Circuits, Vol. SC-6, No. 1, 1971, pp. 2-7. VCC
+
-
VREF
R1
R2
R3
R4
R5
Q1Q2
Q3 Q4
Q5
IC2 IC1
140115-03
x1xN
VBG

Lecture 17 – Temperature Stable References (5/15/18) Page 17-14
CMOS Analog Circuit Design © P.E. Allen - 2016
A Series Temperature Independent Voltage
Reference
An early realization of the series form is shown below

:
Assuming V
OS = 0, then V
R1 is
V
R1 = V
EB2 -
V
EB1 =
V
t ln





J
2
J
s2
- V
t ln





J
1
J
s1

= V
t ln





I
2A
E1
I
1A
E2
= V
t ln





R
2A
E1
R
3A
E2

The op amp forces the relationship I
1R
2 = I
2R
3
V
REF =V
EB2+I
2R
3=V
EB2+V
R1





R
2
R
1
= V
EB2+





R
2
R
1
V
tln





R
2A
E1
R
3A
E2
= V
CTAT+





R
2
R
1
ln





R
2A
E1
R
3A
E2
V
t
Differentiating the above with respect to temperature and setting the result to zero, gives






R
2
R1
ln





R
2A
E1
R3AE2
=
VGO - VCTAT + (-)Vt0
Vt

If VOS ≠ 0, then VREF becomes,




K.E. Kujik, “A Precision Reference Voltage Source,” IEEE Journal of Solid-State Circuits, Vol. SC-8, No. 3 (June 1973) pp. 222-226.
V
REF = V
EB2 -






1 +
R
2
R
1
V
OS +
R
2
R
1
V
t ln





R
2A
E1
R
3A
E2





1 -
V
OS
I
1R
2

Lecture 17 – Temperature Stable References (5/15/18) Page 17-15
CMOS Analog Circuit Design © P.E. Allen - 2016
Example 17-2 – Design of the Previous Temperature Independent Reference
Assume that AE1 = 10 AE2, VEB2 = 0.7 V, R2 = R3, and Vt = 0.026 V at room temperature
for temperature independent reference on the previous slide. Find R2/R1 to give a zero
temperature coefficient at room temperature. If V
OS = 10 mV, find the change in V
REF.
Note that I1R2 = VREF − VEB2 − VOS.
Evaluating the temperature independent constant gives






R
2
R
1
ln





R
2 A
E1
R3A
E2
=
VGO - VCTAT + (-)Vt0
VPTAT
=
1.205 - 0.7 + (2.2)(0.026)
0.026
= 21.62
Therefore, R2/R1 = 9.39. In order to use the equation for V
REF with V
OS ≠ 0, we must
know the approximate value of VREF and iterate if necessary because I1 is a function of
VREF. Assuming VREF to be 1.262, we obtain from
V
REF = V
EB2 -






1 +
R2
R
1
V
OS +
R2
R
1
V
t ln





R2AE1
R
1A
E2





1 -
VOS
V
REF - V
EB2 - V
OS

a new value VREF = 1.153 V. The second iteration makes little difference on the result
because VREF is in the argument of the logarithm

Lecture 17 – Temperature Stable References (5/15/18) Page 17-16
CMOS Analog Circuit Design © P.E. Allen - 2016
Series Temperature Independent Voltage References
The references shown do not use an op amp and avoid the issues of loop stability and
PSRR.







I1 = IPTAT’ =
VBE2 - VBE1
R2
=
Vt
R2









ln







I2
Is2
- ln







I1
Is1

=
Vt
R2
ln







Is1
Is2
=
Vt
R2
ln







AE1
AE2

Since I1= I2, VREF = VBE2 + I1R1 = VBE2 +







R1
R2
ln







AE1
AE2
Vt
= VCTAT +







R1
R2
VPTAT
VD1 = I2R
1 + VD2
I3 = I2 = IPTAT’ =
Vt
R
1
ln(n)
Let R
1 = R and R
2 = kR,
VREF = VD3 + I3(kR) = VD3 + kVt ln(n)
= VCTAT + kVPTAT

Lecture 17 – Temperature Stable References (5/15/18) Page 17-17
CMOS Analog Circuit Design © P.E. Allen - 2016
Parallel Temperature Independent Voltage Reference
A parallel form of the temperature independent voltage reference is shown below:








VREF =





R3
R1
VPTAT +





R3
R2
VCTAT
Comments:
• The BJT of the I
CTAT’ generator can be replaced with an MOSFET-diode equivalent
• Any value of VREF can be achieved
• Part (b.) of Example 17-1 showed how to design the resistors of this implementation

Lecture 17 – Temperature Stable References (5/15/18) Page 17-18
CMOS Analog Circuit Design © P.E. Allen - 2016
How Can a Bandgap “Current” Reference be Obtained?
Use a MOSFET under ZTC operation and design the parallel form of the bandgap
voltage reference to give a value of VZTC.








Comments:
• Ability of the ZTC point not to drift with temperature restricts the temperature range
• The reference voltage must be equal to the ZTC voltage
• The voltage V
REF will suffer the bandgap curvature problem which can be translated
into I
REF. 060529-09
V
DD
I
PTAT
V
DD
I
VBE
R
3
+
-
V
REF
=V
GS
(ZTC)
I
REF

Lecture 17 – Temperature Stable References (5/15/18) Page 17-19
CMOS Analog Circuit Design © P.E. Allen - 2016
Bandgap Curvature Problem
Unfortunately, the
kT
q
ln








T0
T
term of the pn
junction contributed a nonlinearity to the
CTAT realization. This is illustrated by the
dashed lines in the plot shown.
The result is shown below where the reference
voltage is not constant with temperature.






Comments:
• True temperature independence is only achieved over a small range of temperatures
• References that do not correct this problem have a temperature dependence of 10
ppm°/C to 50 ppm/°C over 0°C to 70°C.

Lecture 17 – Temperature Stable References (5/15/18) Page 17-20
CMOS Analog Circuit Design © P.E. Allen - 2016
Some Curvature Correction Techniques
• Squared PTAT Correction:
Temperature coefficient ≈ 1-20 ppm/°C
• VBE loop
M. Gunaway, et. al., “A Curvature-
Corrected Low-Voltage Bandgap
Reference,” IEEE Journal of Solid-
State Circuits, vol. 28, no. 6, pp. 667- 670,
June 1993.
• Nonlinear cancellation
G.M. Meijer et. al., “A New Curvature-Corrected Bandgap Reference,” IEEE
Journal of Solid-State Circuits, vol. 17, no. 6, pp. 1139-1143, December 1982.
VBE
VPTAT
VRef = VBE + VPTAT + VPTAT
2
Temperature
V
o
l
t
a
g
e
Fig. 400-01
VPTAT
2

Lecture 17 – Temperature Stable References (5/15/18) Page 17-21
CMOS Analog Circuit Design © P.E. Allen - 2016
VBE Loop Curvature Correction Technique
Circuit: Operation:
INL =
VBE1-VBE2
R3
=
Vt
R3
ln





Ic1A2
A1Ic2

=
Vt
R3
ln





2IPTAT
INL+IConstant

where
Iconstant = INL + IPTAT + IVBE
≈ INL +
Vt
Rx
+
VBE
R2

(Iconstant a quasi-temperature independent current subject to the TCF of the resistors)
where
Vt = kT/q
Ic1 and Ic2 are the collector currents of Qn1 and Qn2, respectively
Rx = a resistor used to define IPTAT
 VREF =







VBE
R2
+
Vt
R3
ln





2IPTAT
INL + Iconstant
+ IPTAT R1
Temperature coefficient  3 ppm/°C with a total quiescent current of 95µA. VDD VDDVDD
IPTAT IPTAT
IPTAT
INL
IVBE
+INL
IVBE
IConstant
Qn1
x1
Qn2
x2R2
R3
VREF
3-Output Current Mirror (IVBE
+INL)
VDD
Fig. 400-02
R1

Lecture 17 – Temperature Stable References (5/15/18) Page 17-22
CMOS Analog Circuit Design © P.E. Allen - 2016
Series Temperature Independent Voltage Reference with Curvature Correction
Objective: Eliminate nonlinear term from V
CTAT
.
Result: 0.5 ppm/°C from -25°C to 85°C.
Operation:
V
REF = V
PTAT + 3V
CTAT – 2V
Constant
Note that, I
PTAT  I
c  T
1   = 1
and I
Constant  I
c  T
0   = 0,
Previously we found,
V
CTAT(T) ≈ V
GO -
T
T
0





V
GO-V
CTAT(T
0) -( -)V
t ln





T
T
0

so that
V
CTAT(I
PTAT) =V
GO-
T
T
0




V
GO-V
BE(T
0)-(-1)Vt ln





T
T
0

and VCTAT(IConstant) =VGO -
T
T0





VGO -VCTAT(T0) -Vt ln





T
T0

Combining the above relationships gives,
V
REF(T) = V
PTAT + V
GO - (T/T
0)[V
GO - V
CTAT(T
0)] - [ - 3] V
t ln




(T/T
0)
If   3, then V
REF(T) ≈ V
PTAT + V
GO



1 - (T/T
0) + V
CTAT(T
0)(T/T
0)

Lecture 17 – Temperature Stable References (5/15/18) Page 17-23
CMOS Analog Circuit Design © P.E. Allen - 2016
A Parallel Version of the Nonlinear Curvature Correction Technique
Disadvantages of the series temperature independent voltage reference includes stacking
of transistors and integer resolution in the cancellation of the nonlinear term.
Concept:

V
REF = K
1·I
PTAT’+ K
2·I
CTAT’(=1) - K
3·I
CTAT’(=0)
Block Diagram:





IPTAT’ ICTAT(1)’
VDD
R
ICTAT(0)’ VREF
+
-
IPTAT’ ICTAT(1)’
VDD
R
ICTAT(0)’ VREF
+
-
IREF
IREF
IREF VCTAT(0)
+
-
VCTAT(0)
R
ICTAT(0)’
120326-02

Lecture 17 – Temperature Stable References (5/15/18) Page 17-24
CMOS Analog Circuit Design © P.E. Allen - 2016
Design Relationships for the Parallel Nonlinear Curvature Correction Reference
From the previous block diagram, if R
4A = R
4B = R
4, then
V
REF =
R
4
R
1
V
PTAT +
R
4
R
2
V
CTAT1 -
R
4
R
3
V
CTAT0
Previously we saw that,
V
CTAT1 =
V
CTAT(I
PTAT) =V
GO-
T
T
0




V
GO-V
BE(T
0)-(-1)Vt ln





T
T
0

and
V
CTAT0 = V
CTAT(I
Constant) =V
GO -
T
T
0





V
GO -V
CTAT(T0) -V
t ln





T
T
0

To cancel the nonlinear temperature term requires that,

R
4
R
2
(-1)V
t ln





T
T
0
=
R
4
R
3
 V
t ln





T
T
0
or
R
3
R
2
=

−

Define VCTAT = VGO-
T
T0




VGO-VBE(T0) = VBE(T0) if T = T0.
Therefore,

V
REF =
R
4
R
1
V
PTAT +
1


R
4
R
2
V
CTAT

Lecture 17 – Temperature Stable References (5/15/18) Page 17-25
CMOS Analog Circuit Design © P.E. Allen - 2016
Design Relationships – Continued
Differentiating V
REF with respect to temperature at T = T
0 and setting equal to 0 gives,

R
2
R
1
= - T
dV
CTAT
dT
 V
PTAT

The design procedure for the parallel, curvature corrected reference is:
1.) Pick R
1. Can be used to set the magnitude of current flow based on IPTAT.
2.) Choose R
2 to satisfy
R
2
R
1
= - T
dV
CTAT/dT
 V
PTAT

3.) Pick R
3 to satisfy
R
3
R
2
=

−

4.) Finally, select R
4A = R
4B = R
4 to achieve the desired magnitude of V
REF
V
REF =
R
4
R
1
V
PTAT +
1


R
4
R
2
V
CTAT =
R
4
R
2




R
2
R
1
V
PTAT +
V
CTAT


=
R
4
R
2




-T


d
dT






V
GO -
T
T
0
V
GO +
T
T
0
V
CTAT +
V
CTAT

=
R
4
R
2

V
GO

Lecture 17 – Temperature Stable References (5/15/18) Page 17-26
CMOS Analog Circuit Design © P.E. Allen - 2016
Example 17-3 – Design of a Zero Temperature Coefficient Voltage Reference
Assume that VCTAT = 0.7 V, R1 = 10k,  = 3.2, A
2 = 10A
1, Vt = 0.026 V and
dV
CTAT/dT = -3mV/°C at room temperature for the parallel temperature independent
voltage reference. Find R2, R3 and R4 to give a zero temperature coefficient at room
temperature and a reference voltage of 0.72V.
Solution
Following the previous design procedure, we get,
1.) R
2 = (-300)
(-0.003)
3.2(0.0259)ln10
10k = 47.16 k
2.) R
3 = R
2

-1
=
47.16k(3.2)
2.2
= 68.60 k
3.) V
REF = 0.72V =
R
4
R
2

V
GO

⇒ R4 =
V
REF
V
GO
 R
2 =
0.72
1.205
(47.16 k)) = 90.17 k

Lecture 17 – Temperature Stable References (5/15/18) Page 17-27
CMOS Analog Circuit Design © P.E. Allen - 2016
Results and Practical Considerations
Worst case tempco:

Practical considerations:
• Stability of feedback loops
• Influence of the op amp VOS
V
REF(error) ≈ V
OS





R
4
R
1
+
R
4
R
2
+
R
4
R
3

• Tuning
+-
R1
DQ1
x1
DQ2
x10
VDD
PTAT Block
10GF
10GH
vin
vout
111208-09 +-
RX
DQX
x1
IIN
VOS
R4
VREF
IX
IX

Lecture 17 – Temperature Stable References (5/15/18) Page 17-28
CMOS Analog Circuit Design © P.E. Allen - 2016
Other Characteristics of Bandgap Voltage References
Noise
Voltage references for high-resolution ADCs are particularly sensitive to noise.
Noise sources: Op amp, resistors, switches, etc.
PSRR
Maximize the PSRR of the op amp.
Offset Voltages
Becomes a problem when op amps are used.
VBE2 = VBE1 + VR1 + VOS
VBE = VBE2 - VBE1 = VR1 + VOS = Vt ln








iC2AE1
iC1AE2

Since iC2R3 = iC1R2 - VOS
then
iC2
iC1
=
R2
R3
-
VOS
iC1R3
=
R2
R3









1 +
VOS
iC1R2

Therefore, VR1 = -VOS + Vt ln








R2AE1
R3AE2







1 +
VOS
iC1R2

VREF = VBE2 - VOS + iC1R2 = VBE2 - VOS +








VR1
R1
R2 = V
BE2 - V
OS +








R2
R1



 VREF = VBE2 - VOS








1+
R2
R1
+
R2
R1
Vt ln








R2AE1
R3AE2







1 -
VOS
iC1R2

Lecture 17 – Temperature Stable References (5/15/18) Page 17-29
CMOS Analog Circuit Design © P.E. Allen - 2016
DESIGN OF BIAS VOLTAGES FOR A CHIP
Distributing Bias Voltages over a Distance
The major problem is the IR drops in busses. For example,

If the bus metal is 50m/sq. and is 5µm wide, the resistance of the bus in one direction
is (50m/sq.)x(1000µm/5µm) = 10 The difference in drain currents for an overdrive
of 0.1V is,
VGS1 = 1mV + VGS2 + 1mV = VGS2 + 2mV

ID1
ID2
=
(VGS1-VTN)2
(VGS2-VTN)2
=
(VGS2-VTN+2mV)2
(VGS2-VTN)2
=








0.1+0.002
0.1
2
= 1.04 100µA
100µA
1mm
M1 M2
VBias
050716-01
ID1 ID2
100µA

Lecture 17 – Temperature Stable References (5/15/18) Page 17-30
CMOS Analog Circuit Design © P.E. Allen - 2016
Use Current to Avoid IR Drops in Long Metal Lines
Example:

Lecture 17 – Temperature Stable References (5/15/18) Page 17-31
CMOS Analog Circuit Design © P.E. Allen - 2016
Practical Aspects of Temperature-Independent and Supply-Independent Biasing
A temperature-independent and supply-independent current source and its distribution:

The currents are used to distribute the bias voltages to remote sections of the chip.

Lecture 17 – Temperature Stable References (5/15/18) Page 17-32
CMOS Analog Circuit Design © P.E. Allen - 2016
Practical Aspects of Bias Distribution Circuits - Continued
Distribution of the current avoids change in bias voltage due to IR drop in bias lines.
Slave bias circuit:











From here on out in these notes,
VPBias1 = VPB1 = VDD-|VTP|-VSD(sat) VPBias2 = VPB2 = VDD-|VTP|-2VSD(sat)
and
VNBias1 = VNB1 = VTN + VDS(sat) VNBias2 = VNB2 = VTN + 2VDS(sat)
From Master Bias
Ib
Ib
VDD
VPBias1
VPBias2
VNBias2
VNBias1
Fig. 400-08

Lecture 17 – Temperature Stable References (5/15/18) Page 17-33
CMOS Analog Circuit Design © P.E. Allen - 2016
SUMMARY OF TEMPERATURE STABLE REFERENCES
• The classical form of the temperature stable reference has a value of voltage close to
the bandgap voltage and is called the “bandgap voltage reference”.
• Bandgap voltage references can achieve temperature dependence less than 50 ppm/°C
• Correction of second-order effects in the bandgap voltage reference can achieve very
stable (1 ppm/°C) voltage references.
• Watch out for second-order effects such as noise when using the bandgap voltage
reference in sensitive applications.
• Distribution of bias voltages over a long distance should be done by current rather than
voltage.
Tags