SlidePub
Home
Categories
Login
Register
Home
Technology
machine learning introductory concepts .
machine learning introductory concepts .
SavyanPV1
9 views
17 slides
Sep 26, 2024
Slide
1
of 17
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
About This Presentation
Machine learning fundamentals is discussed in this slide
Size:
1.33 MB
Language:
en
Added:
Sep 26, 2024
Slides:
17 pages
Slide Content
Slide 1
ETHEM ALPAYDIN
© The MIT Press, 2010
[email protected]
http://www.cmpe.boun.edu.tr/~ethem/i2ml2e
Lecture Slides for
Slide 3
Learning a Class from Examples
Class C of a “family car”
Prediction:Is car xa family car?
Knowledge extraction: What do people expect from a
family car?
Output:
Positive (+) and negative (–) examples
Input representation:
x
1: price, x
2: engine power
3Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 4
Training set XN
t
tt
,r
1
}{
xX
negative is if
positive is if
x
x
0
1
r
4
2
1
x
x
x Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 5
Class C
2121 power engine AND price eepp
5Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 6
Hypothesis class H
negative is says if
positive is says if
)(
x
x
x
h
h
h
0
1
N
t
tt
rhhE
1
1x)|(X
6
Error of h onH
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 7
S, G, and the Version Space
7
most specific hypothesis, S
most general hypothesis, G
h H, between Sand Gis
consistent
and make up the
version space
(Mitchell, 1997)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 8
Margin
Choose hwith largest margin
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 8
Slide 9
VC Dimension
Npoints can be labeled in 2
N
ways as +/–
HshattersNif there
exists h Hconsistent
for any of these:
VC(H ) = N
9
An axis-aligned rectangle shatters 4 points only !
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 10
Probably Approximately Correct
(PAC) Learning
How many training examples Nshould we have, such that with probability
at least1 ‒ δ, hhas error at most ε ?
(Blumer et al., 1989)
Each strip is at most ε/4
Pr that we miss a strip 1‒ ε/4
Pr that Ninstances miss a strip (1 ‒ ε/4)
N
Pr that Ninstances miss 4 strips 4(1 ‒ ε/4)
N
4(1 ‒ ε/4)
N
≤ δ and (1 ‒ x)≤exp( ‒ x)
4exp(‒ εN/4) ≤ δ and N≥ (4/ε)log(4/δ)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)10
Slide 11
Noise and Model Complexity
Use the simpler one because
Simpler to use
(lower computational
complexity)
Easier to train (lower
space complexity)
Easier to explain
(more interpretable)
Generalizes better (lower
variance -Occam’s razor)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)11
Slide 12
Multiple Classes, C
ii=1,...,KN
t
tt
,r
1
}{
xX
, if
if
ij
r
j
t
i
t
t
i
C
C
x
x
0
1
, if
if
ij
h
j
t
i
t
t
i
C
C
x
x
x
0
1
12
Train hypotheses
h
i(x), i =1,...,K:
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 13
Regression
01
wxwxg
01
2
2
wxwxwxg
N
t
tt
xgr
N
gE
1
21
X|
13
N
t
tt
wxwr
N
wwE
1
2
0101
1
X|,
tt
t
N
t
tt
xfr
r
rx
1
,X Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Slide 14
Model Selection & Generalization
Learning is an ill-posed problem;data is not sufficient to
find a unique solution
The need for inductive bias,assumptions about H
Generalization: How well a model performs on new data
Overfitting: Hmore complex than Cor f
Underfitting: Hless complex than Cor f
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)14
Slide 15
Triple Trade-Off
There is a trade-off between three factors (Dietterich,
2003):
1.Complexity of H, c (H),
2.Training set size, N,
3.Generalization error, E, on new data
As NE
As c (H)first Eand then E
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)15
Slide 16
Cross-Validation
To estimate generalization error, we need data unseen
during training. We split the data as
Training set (50%)
Validation set (25%)
Test (publication) set (25%)
Resampling when there is few data
Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 16
Slide 17
Dimensions of a Supervised
Learner
1.Model:
2.Loss function:
3.Optimization procedure:|xg
t
tt
grLE |,| xX
17X|min arg*
E Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Tags
Categories
Technology
Education
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
9
Slides
17
Age
435 days
Related Slideshows
11
8-top-ai-courses-for-customer-support-representatives-in-2025.pptx
JeroenErne2
50 views
10
7-essential-ai-courses-for-call-center-supervisors-in-2025.pptx
JeroenErne2
49 views
13
25-essential-ai-courses-for-user-support-specialists-in-2025.pptx
JeroenErne2
38 views
11
8-essential-ai-courses-for-insurance-customer-service-representatives-in-2025.pptx
JeroenErne2
36 views
21
Know for Certain
DaveSinNM
24 views
17
PPT OPD LES 3ertt4t4tqqqe23e3e3rq2qq232.pptx
novasedanayoga46
27 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-17)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better