machine learning introductory concepts .

SavyanPV1 9 views 17 slides Sep 26, 2024
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Machine learning fundamentals is discussed in this slide


Slide Content

ETHEM ALPAYDIN
© The MIT Press, 2010
[email protected]
http://www.cmpe.boun.edu.tr/~ethem/i2ml2e
Lecture Slides for

Learning a Class from Examples
Class C of a “family car”
Prediction:Is car xa family car?
Knowledge extraction: What do people expect from a
family car?
Output:
Positive (+) and negative (–) examples
Input representation:
x
1: price, x
2: engine power
3Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Training set XN
t
tt
,r
1
}{

xX 



negative is if
positive is if
x
x
0
1
r
4






2
1
x
x
x Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Class C   
2121 power engine AND price eepp 
5Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Hypothesis class H



negative is says if
positive is says if
)(
x
x
x
h
h
h
0
1  


N
t
tt
rhhE
1
1x)|(X
6
Error of h onH
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

S, G, and the Version Space
7
most specific hypothesis, S
most general hypothesis, G
h H, between Sand Gis
consistent
and make up the
version space
(Mitchell, 1997)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Margin
Choose hwith largest margin
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 8

VC Dimension
Npoints can be labeled in 2
N
ways as +/–
HshattersNif there
exists h Hconsistent
for any of these:
VC(H ) = N
9
An axis-aligned rectangle shatters 4 points only !
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Probably Approximately Correct
(PAC) Learning
How many training examples Nshould we have, such that with probability
at least1 ‒ δ, hhas error at most ε ?
(Blumer et al., 1989)
Each strip is at most ε/4
Pr that we miss a strip 1‒ ε/4
Pr that Ninstances miss a strip (1 ‒ ε/4)
N
Pr that Ninstances miss 4 strips 4(1 ‒ ε/4)
N
4(1 ‒ ε/4)
N
≤ δ and (1 ‒ x)≤exp( ‒ x)
4exp(‒ εN/4) ≤ δ and N≥ (4/ε)log(4/δ)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)10

Noise and Model Complexity
Use the simpler one because
Simpler to use
(lower computational
complexity)
Easier to train (lower
space complexity)
Easier to explain
(more interpretable)
Generalizes better (lower
variance -Occam’s razor)
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)11

Multiple Classes, C
ii=1,...,KN
t
tt
,r
1
}{

xX 





, if
if
ij
r
j
t
i
t
t
i
C
C
x
x
0
1 






, if
if
ij
h
j
t
i
t
t
i
C
C
x
x
x
0
1
12
Train hypotheses
h
i(x), i =1,...,K:
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Regression
01
wxwxg  
01
2
2
wxwxwxg    


N
t
tt
xgr
N
gE
1
21
X|
13    


N
t
tt
wxwr
N
wwE
1
2
0101
1
X|, 




tt
t
N
t
tt
xfr
r
rx
1
,X Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Model Selection & Generalization
Learning is an ill-posed problem;data is not sufficient to
find a unique solution
The need for inductive bias,assumptions about H
Generalization: How well a model performs on new data
Overfitting: Hmore complex than Cor f
Underfitting: Hless complex than Cor f
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)14

Triple Trade-Off
There is a trade-off between three factors (Dietterich,
2003):
1.Complexity of H, c (H),
2.Training set size, N,
3.Generalization error, E, on new data
As NE
As c (H)first Eand then E
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)15

Cross-Validation
To estimate generalization error, we need data unseen
during training. We split the data as
Training set (50%)
Validation set (25%)
Test (publication) set (25%)
Resampling when there is few data
Lecture Notes for E Alpaydın2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 16

Dimensions of a Supervised
Learner
1.Model:
2.Loss function:
3.Optimization procedure:|xg   
t
tt
grLE  |,| xX
17X|min arg* 

E Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)
Tags