mat4s_u1_ppt_estadistica.pptx estadística

AnonymousdvXpC0T1 0 views 22 slides Aug 31, 2025
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

estadística


Slide Content

ESTADÍSTICA

ESTADÍSTICA Los orígenes de la estadística, aunque no se sabe con exactitud cuándo se comenzó a utilizar, pueden estar ligados al antiguo Egipto como a los censos chinos que se realizaron hace unos 4.000 años, aproximadamente. Sin duda, fueron los romanos , maestros de la organización política, quienes mejor supieron ocupar la estadística. Cada cinco años realizaban un censo de la población, cuyos datos de nacimientos, defunciones y matrimonios eran esenciales para estudiar los avances del imperio; sin olvidar los recuentos de ganancias y las riquezas que dejaban las tierras.

Para poder comprender mejor este tipo de estudio es importante que conozcas los siguientes términos básicos: Población: Es un conjunto de personas, eventos o cosas de las cuales se desea hacer un estudio, y tienen una característica en común.

Muestra: Es un subconjunto cualquiera de la población; es importante escoger la muestra en forma aleatoria (al azar), pues así se logra que sea representativa y se puedan obtener conclusiones más a fines acerca de las características de la población.

Todo estudio estadístico debe considerar diferentes tipos de variables: Variables Variables cualitativas Variables Cuantitativas Relacionadas con características no numéricas de un individuo (por ejemplo: atributos de una persona, nacionalidad, color de la piel, sexo ). Relacionadas con características numéricas del individuo por ejemplo: edad, precio de un producto, ingresos anuales . Continuas: aquellas que pueden tomar cualquier valor en un intervalo real, ejemplo: alturas, la velocidad de un vehículo. Discretas: aquellas que pueden tomar solo algunos valores en un intervalo y no valores intermedio, ejemplo: edad, número de hermanos.

Ordenando la Información: Al ordenar datos muy numerosos, es usual agruparlos en clases o categorías . Al determinar cuántos pertenecen a cada clase, establecemos la frecuencia. Construimos así una tabla de datos llamada tabla de frecuencias . ¿Para qué se construyen las tablas de frecuencias ? ORDENAR AGRUPAR RESUMIR información

TIPOS DE FRECUENCIAS a) Frecuencia o Frecuencia Absoluta: Es el número de veces que se presenta un valor o categoría de una variable. Se representa por f i .   b) Frecuencia Relativa: La frecuencia relativa se puede expresar en términos de porcentaje o de proporción y se representa por fr. (Es la razón entre la frecuencia absoluta y el total de datos)

Los siguientes datos corresponden a las notas obtenidas por un curso de 24 alumnos en un trabajo de matemáticas: 3,2 4,2 5,6 6,0 2,8 3,9 4,2 4,2 5,0 5,0 3,9 3,9 3,2 3,2 4,2 5,6 6,0 6,0 3,2 6,0 4,2 5,0 5,6 5,0 Ordenemos estos datos en una tabla: Nombre de variable: Notas Frecuencia Absoluta Frecuencia relativa (ambas) Si tu resultado es un decimal, usa 3 dígitos después de la coma EJEMPLO:

Nota Frecuencia Absoluta Frecuencia Relativa Frecuencia Relativa Porcentual (%) 2,8 1 0,041 4,166 3,2 4 0,166 16,666 3,9 3 0,125 12,500 4,2 5 0,208 20,833 5,0 4 0,166 16,666 5,6 3 0,125 12,500 6,0 4 0,166 16,666 ¿Qué conclusiones puedes obtener de la tabla anterior?

Definiciones: Rango: Diferencia entre el máximo y el mínimo valor de una variable. Marca de clase: Representante de un intervalo, y corresponde al promedio entre los extremos de éste. Tamaño de un intervalo: Es el cociente entre el valor del rango y la cantidad de intervalos que se desea obtener. Se recomienda tomar como longitud de los intervalos un valor entero que sea mayor o igual al cociente obtenido.

Para estas tablas debemos considerar cada intervalo con límites cerrado y abierto, o sea [ - [ La tabla siguiente la vamos a elaborar con: Frecuencias absolutas : estas frecuencias son las que se obtienen directamente del conteo Frecuencias relativas : corresponden a los porcentajes de cada frecuencia absoluta. Frecuencia absoluta acumulada : corresponde a la frecuencia absoluta del intervalo más la suma de las frecuencias absolutas de todos los valores anteriores. Frecuencia relativa acumulada : corresponde al porcentaje de la frecuencia relativa del intervalo más la suma de las frecuencias relativas de todos los valores anteriores.

  Existen múltiples tipos de gráficos, pero aquí trataremos solamente de los usados más frecuentemente, que son: gráfico de barras, gráfico de sectores o circular (pastel), histograma, polígono de frecuencias, la ojiva y el pictograma. Representaciones gráficas : La información contenida en las tablas de frecuencias resulta más accesible y fácil de interpretar si se representan por medio de gráficos estadísticos.

Diagrama de barras: Se usa fundamentalmente para representar distribuciones de frecuencias de una variable cualitativa o cuantitativa discreta y, ocasionalmente, en la representación de series cronológicas o históricas. Uno de los ejes sirve para inscribir las frecuencias, ya sean absolutas o relativas (%), y el otro para la escala de clasificación utilizada.

Histograma: Está formado por rectángulos, cuyas bases corresponden con los intervalos de clase y sus Áreas son iguales o proporcionales a sus frecuencias. Este gráfico se usa para representar una distribución de frecuencias de una variable cuantitativa continua. Habitualmente se representa la frecuencia observada en el eje Y, y en el eje X la variable.

Polígono de frecuencias: Es una línea poligonal que une los vértices superiores de las barras de un diagrama de barras, o los puntos medios de las bases superiores de los rectángulos de un histograma. Se utiliza, al igual que el histograma, para representar distribuciones de frecuencias de variables cuantitativas continuas, pero como no se utilizan barras en su confección sino segmentos de recta, de ahí el nombre de polígono. Habitualmente se usa cuando se quiere mostrar en el mismo gráfico más de una distribución.

Diagrama de sectores o gráfico circular: Gráfico circular : Se usa, fundamentalmente, para representar distribuciones de frecuencias relativas (%) de una variable cualitativa o cuantitativa discreta. En este gráfico se hace corresponder la medida del ángulo de cada sector con la frecuencia correspondiente a la clase en cuestión. Si los 360º del círculo representan el 100 % de los datos clasificados, a cada 1% le corresponderán 3,6º. Luego, para obtener el tamaño del ángulo para un sector dado bastaría con multiplicar el por ciento correspondiente por 3,6º (por simple regla de tres).

Pictogramas: Los pictogramas son gráficos similares a los gráficos de barras, pero empleando un dibujo en una determinada escala para expresar la unidad de medida de los datos. Se utiliza un dibujo relacionado con el tema, para representar cierta cantidad de frecuencias. Este tipo de gráfica atrae la atención por los dibujos, pero la desventaja es que se lee en forma aproximada.

Gráfico de líneas u ojiva: En este tipo de gráfico , al igual que el histograma y el polígono de frecuencias el objetivo es representar distribuciones de frecuencias de variables cuantitativas continuas, pero sólo para frecuencias acumuladas. Se representan los valores de los datos en dos ejes cartesianos ortogonales entre sí.  Se pueden usar para representar:  una serie o más series.

Medidas de posición Tienen por objeto, obtener un valor que resuma en sí todas las mediciones. La mayoría de ellas trata de ubicar el centro de la distribución, razón por la cual, se llaman MEDIDAS DE TENDENCIA CENTRAL; estas son: Media, Mediana y Moda. MEDIDAS DE TENDENCIA CENTRAL Media aritmética o promedio: Es una de las medidas de tendencia central de mayor uso. La media muestral se simboliza por y la media poblacional de denota por  .

Mediana (Me): Sea X una variable por lo menos ordinal y sea x 1 , x 2 ,…x n una muestra de tamaño n de observaciones de la variable, se define como Mediana "Me" un valor tal que supera a no más del 50% de las observaciones y es superado por no más del 50% de las observaciones, cuando estas han sido ordenadas según magnitud . MEDIANA PARA DATOS NO TABULADOS: Ejemplo: Consideremos la edad en años de ocho personas 10 18 25 32 12 5 7 7 Para calcular la mediana , previamente se deben ordenar las observaciones. En este caso lo haremos en forma creciente: 5 7 7 10 12 18 25 32 Como la cantidad de datos es par, entonces la mediana corresponde al promedio de los datos centrales, por lo tanto la mediana es 11.

Moda o Modo (Mo): La moda se identifica al observar el valor que se presenta con más frecuencia en la distribución. Si consideramos el ejemplo del peso de una muestra de personas: 65 76 48 48 68 78 90 87 67 72 78 Mo = 48 kilos Mo = 78 kilos. Esto significa que la mayoría de estas personas pesa 48 kilos y 78 kilos. Esta distribución es bimodal .

Moda o Modo (Mo) para datos tabulados Ahora bien, en el caso de datos agrupados en intervalos, es fácil determinar la clase modal (clase con mayor frecuencia), pero el valor dentro del intervalo que se presume tenga mayor frecuencia se obtiene a partir de la siguiente expresión :    
Tags