Class 12 maths ncert cbse ch-5 solutions continuity and differentiability.ppt
Size: 1.69 MB
Language: en
Added: May 17, 2024
Slides: 88 pages
Slide Content
m
Important Questions, Formula St
www.mathongo.com
ja
Bale) = re 1) 16 1 conto et à = à
2 Rzamine the following functions for conti,
(a) fe == @ re
A Sas or siete)
Lee be rot mai oia Af
Kn) un ER Dey oi
Panag =<, des
ones = - AOL 0 de
Tin FE
a odos où every puis a It doi (Re RL
coco la emma,
Or
Hore fe) = — Ela a polynomial funtion. We know that
vary palm Buck continuas (vn ate blow
1. Constant faction
2 Payomlal face.
=
“or.
Pong = ei (0,10) = I,
sonoro.
sf nee Lap pla la la
Mines
oe
A A
i ee ‚ku comets
Folgen) =D of de
DmÖCH x #0 Wo ko that every rational
Re Zell Noto Ron
0). Thode fa ati eve a Sta (5).
og
mayen 2-5 AA
ern.
an el semer
a
Soe eae
OF
O ron
Falling «= m, =
ga png à = la (7 in) = 2
Ea fio) = 16) em) iO ia cti nt nn.
a the funetion [defined by,
[a en
ye 27
Contino ats, ara, At oa?
(aya «4 =)
IB x 29 in
(Rand Note (om con lt) bef he et of @.No lia
O
12
Ge ro) a
on
ms phy renter th 0 ey =
Peking = 8, Bm FO = à Ep f= Bf)
(Hey Fein and = 0 = (0)
Bight Hand Lime = og [GI = fi 5 17]
G20 = sis lightly > 2 and banco «> 1 ase)
Pring =2, 8
in fo) = in fen)
Jo 160 exists cod = 6 = 70)
(Posing «= 2> 15a U0, (= 8)
oe wann ot» 72
dire loco al gl bt tite
ind all points of vieeexinoity o£/f whore la defined by
orion lo 19
fears, ada
Ken. 5
a Given fis) - 23, 2 28
Lada aoe
To find pins of decanta 0 nt daa)
Here (0) ls dened far 3:52 le, on (= 2
and al ir = > 2 Le, on 0)
Domb (== D 0) = (y=) =
By (0, for aim < 3 (2 = 2 being partitioning peint ce
mentioned here) f(a) = 2e + Bis
D GD, or oh > 2, (6) = 2e 3 Ina payment and once
‘cnc Thor fe) een on R=
li, io) dove met xls amd hone fi) bs discotecas at
2-3 Cap
sl
srl
9 mamo
Bei. Gira fe) = IE! se sel
LY Si
Bata 0. rudo lala)
ES 40,
1 2x0 a)
25 it 2-0 un
‘Geary domain of) 1 (FÜ la deta > à <0.
Erin)
By (for elle > 0, f(s) = Lo a constant function and anos
mine.
By Ui, fc alle <0, (x) = = 1 in a coment faction and ane
econ fs) a continus om E = 19
iw a0 =
Pas «01 m1 = 0)
en)
aa «ip, na wna 0
Le, e010)
Dane SU, - AS, fe
Free lind 0), me ad Bt
TEI - 1 talallcot » se wenn
Wars (= 1 i slds Set
We know that orig onthe fon Cotino.
fia pen NS
Henze o pot of acon
CNET
(tan # sat
ati, wa 0)
En w act =
1.
Gr
Were fz) la defined for € a1 Le, on I, =) ond alo for
Domain ofa =, DUO) = (=, eR
Pang en, = 142
tm fe) = 10) 2)
oe ee
2 Fl doctor on fi we dein (ham)
See mo pa ot deci
Ps M xsd
ten if x>2
[okay «de 0
an x 28 40
TT CC
(C=, land oo Sale > alte, on =)
y Denis ot fin (ny <A
By (0) fbr on ua flan à is alpslymemiel and Dona
bus.
D or alla = 2, fi) = + 148 a poisaoralal and Manco
DFE)
Glen: -
conti an 8 — (3
Let us examine conti of fat the partlloalog pol = 2
Tek Bend Limit = Jig /6)= mG? 5) ET
Wear = waa)
Pains = 2,
ty
Here UE) la defined for x 5 1 Le, on (== Mlandiala Ser
> Uke, on
Domain of fin. = WU) = (cm, =) = 8
Br (fr lie < 1, FO) = #1 a polo and Rosca
By (0) foe all x > 1, f(a) = 22 ina polynomial and hones
pr
Fada costera on R —().
Let
zn
Lal Hond Kitt > Jim flo im (8
NAT 0
a ey A yon
De": - Ae
EME
ne mt xi
Hewes the Plat of disco In «= 1 (ely)
a te met defined y
+5 4 st
ra
a continue function?
‘Ban fe)» Bi FU)
ian io) dos et at
ance fe) Sa acetingmus et = 1,
à = Ll ho only poet of dicen:
Discuss the continmlty of the function, f where fin defined by
(sw Osead
I, Lem <s
[628% >< 10)
EUX osa 0
fe fe 2 i)
Eu dern 1)
From (9) ana liye ennfaa that / i dana a, 1
UG, Uta, 191/ Le, fly te dane i 10
D off) SO 1
ews), for 053 <, fg) = 3 i à lanas: fonte and hoses
in conteo Be SE SL
From (i), fr 1 < <3, fs) = Ai a conta! Kinn and Danco
in min for 1 < <8,
Lot us examine contiauly eff nt the partiiecing peiat
aa
Laß Hand Limit = Mn fin) = En à
pacar =,
Right Hand Lit = lg /6)= im 6 Dy dl
Saat = =>
Peking = = 5
Bp foe be fa)
ir fo) does mt cet and hanca fa) ix dicen où
PE
Ee lland à = Sere the fms roto of scene Of the
Rane fate deen 10,20)
fae ey =< of
Tone os den
x u
Ths deals of / lek Ryu vee Ri ze< 1)
DR: > udm
=O ond « = Lars partitieias poior for ho damaln of he
foin.
Fon al e < fl) = Bein a pau conan.
Ror 0.41314 1, f (2) = 8b m cunatant fonttion nad honos
Pow all > 1, f(g) = deine prime ond one crninooos,
Lot us discuss coodnulty a portioning paint = = 0.
Aue =0,f0=0 [flo 80256.)
Beg 10) e 29 nn <0 calf) O
0-0
SE
an
BEE ony ya aan as
en
in
Bee
Y
A Æ 4
a: Y
O AY AT
er.
N. SA
+
Ae LA Tee
Si
O mes
eee)
Secor eee a
Eee carne Gf maa
en
2 Do
BoP = =>)
Peitiogx= 1, =2
Rim 7) = im. 6) (02) «tim eis ond = 2.
Puta = 1 in (0,10) AD = 2
Jo flo) = (0) 2) fla) la continus at = 1 an
‚Tieres fin contnwsne ar all in ite domaln R,
Find Me relationehip between a and B 0 Dat Can fanotion
f doña by
FE.
Near Ie ei na re: Sowers 2)
ge Se og
To exacnios continuity ffl = 1
A - ME + 1 By a)
ow Ae a demon eo
D): AR
Bio pe Lila Nr et ee 1) BO
CCR ı a = 11 20)
Patas seins
MIOS i fs) = 8)
ba 70) rita und = 5
Pong = Lia UOC 1>0) (0) = + 1» 5)
LUCE
fi) conta nt = 1 ll es alas of À
29. how that the Function Gofimed by gl) = = - Ir ts
Pus hoot
O
(o Mea Zah, Beni + A1= 0)
mu
O =
ln gn le i) amet
Han a) oon nt ocio and hanc 6) diciones of
2 = 6 (ny ige),
SE) = 2 Let dicas oll ore pia
Very Impertant Mot, If Foncea / una y no coins ia
e coment dan D,
A A doesn
imac RE AM points of D except hoes where
AA sin x » 6 comtinuous|at« = xt
(Giron: fis) =~ ala 4 ED nan
=e) he
whee 40 2 20 6 aod Me) = sine
Wo know that te) 23 « 6's a palm function and hence ia
cwotinwaon Geol zul)
Ag Ma) = ai «alg a la funcion comimos fra real)
By @) fa) = ena +5 FC) AO)
being the dienen a tw seins eins Sa a omis
Ga FE) = a 2 08 @)fG)= ein = 08 à
CCE CEE
We Knew Gat in ea continuous fonction for al real =
‘Alss mo ka that con a a continuous fanctinn fr all rel n
(Gen allan of @. No. 230) Below)
By Mata at the nd af miaken e Q- No 19,
(0) their sum feia (3) = sin x + em = a sao nio
fr a ral =,
GD thats énonce Fonetion CE) = sin = - con = In las
cn in im comics
ert polo a
TP) = haf fla
hat ha method l ning fo lity mln Aid
(fond i Pi) shou aboot.
. Discuss the|eensianiy of the codo comcast, scant mad
fonctions.
sa.
langen
(Lat fin ho he one fenton
tay [= coo 0)
Oloriy, Fir ts rool and Saito for al roal values of
m Le, fa) is dead for aM veal < Thuralbre Soma of
foe
id seca,
Um f(s) Yom cons
Fiol nt ata Le, ee
Yes ae = 0 ie, when # = nm 0.62
Domain off) man zu DR ke = mm ne A
2 fis real end Gite À € à Di
LE
Now (a) = come Gh = E “a
New gl) = 1 being constant function Le continuons om
dorada D and Bi) = nino nanas od enti um
Dela D.
OA
AT fe
(dba ota Naya al te endl poor 6 Q Ne 19,
Tet) be inner audi
Len wer ct ala Le, =
made Lo dle Eder
Domain i) = ne
Tica My (f(a) et =
23, ad eit pan of laconic where
(m
t= |=
ES
Sol Tha doma df a ke Rew MUERE
= ae pion vont Ho al ie gon Sin.
For alls <0, (6) + EE co
ES. «à ME
O A
[lc “ue 0
Ronan (se à aston her ro
Tin e el
Hk un disc ao continuity 0 /6) st An räioning
D: fee) A Life pto!
for a E
[re = cum ro) EE tu]
cios fins Gaona fin) and ea (se
faces) is eontinuoes fr oll ral xo 0.
Now let us examine continuity st == 0,
lin f6)= Tin, in à
Filtern marke qu ma a
a ts]
a 28 ae
nes (2) ern soca on domain of /
canine te condi of flere in Gesell,
re ee
PE : 2
fins if ano en)
are fe) 1 Em 2)
Fram), f(s) in dined far cn 0 and fm (4) fe) a din
Bene,
Denia fa 146) O =.
From @) fr 8, (6) = a= = eos bing the firme of to
swotinusn uncon tn x nd co x In conti fr al x 8
ones 7) la continous on R = (0.
Now lotus eramine comte #4 =
ews
a
Per = nue
ig Wd dl = Gg EN Drum
an Bor =o
Pags Ein D [= 10) =
Fm ar ns 2 een,
there i = ly) =f)
nm 0 k= 2
pl «dl
ea ad
a 4
N dl."
¡aio cole Een
IH nite Nue denn
re at x ae
Putting =m = he 61 :
Right Hand Unit = Fe, fü) Em, cs
Pulg = =, } con dino
E
da f= im, FO
Bet fi) a setas at = Eden)
ame =
Pug rn the hei as
|
tte ae ten ee eed
LINE
Fale lesb ass.
LE e fo
da continua fonction,
Ge E 7)
la Y 10 eB en
~ 2) es]
roe (4 onl GH), PL nc Me we MU <= «I
IEA Le AU 10 flO) 10, Bea) e
=k Dom off la E.
‘Giron: fa continus fat (of cama Goma ero
Ry heroine fi) a alo cominanas nt portioning pla = 2
ad's = 30 ofthe domain,
Becanes (a) a omklauru ot parting plat <= 2, era)
In for Je fof) my
Now En fi) = Im 6 [ero
hui ey f= me LE
e
Ping x= it; = 21
Patteg 2 18 in Ban. GD, 10) = 21
sting boro values in own o) we aro
EPA
= meto
Lat us schen osa. o) onl i) far a an
mm (oi) — eon. (a) pre nie >
A sar
CEC
"Very Important Hori: Cámponio timation of kmo continuous
Sinetiens Is contlamons.
A AN
ad (e «
‘BL Bhow thst tho Runetion| defined dy/f (Ja non (2) ix =
‘gain M) = sn proce funcion aná Bone la mamans.
(gabe ng) na) fe haa
nn) (Changing le 2 ig) = mn)
it fone
(0) iy (being th exon ‘to
‘continuous fexttibes i rontinunas fr a a i,
domain À
Tate 1) = oe =| Cage) aig the cept frio
‘eve online fonctions ls coninoous
Benraine Bat aa | | In a continuous function.
Leb) a nd tc) = 12
We Know that en x and || re online faction.
fd aa contin,
New (fog) im CN = sin (aol = e rl
Wo knew that cempoute action «two coniownna factions da
pad
rs a conto He da | la nam
Find all point of diseotiguy off deiocd by
Tey = | dle 11,
co (ae + 1
Tila (Gaya sade e ange « R
Fin dins fr lla 2 de, decis fi RU
roc (fc = <= fi) = La constant Funtn and boo a
contra fs <=.
From Gl), for = 1 <x 218) f(x) == 2e 1 la a polynomial
Section and boom i conanoun for <m
y > 0, 2) = La a estan fc ad noo de
coin for > 6
{is onu lo R = (AL 0
CR. point
Cr]
CT
Free:
En ¡HEN
= 1m 69 era) (0) =1
Be, f= fede 0
{continuous at =~ 1 lan.
Lot un examine continwiéy of f al partitioning point,
+ fia comica at 2-8 ac
ia cotas ea the decada
"Tier la na pela of srl.
Second Solution
Wo Koen that every modulation in conawece for a me «.
hate Le and le + II or continuous für od eal x
‘Ase, we Know thot differance of te caninas functions la
CARE iro wel a
> har eo pot of
Get NCERT Solutia
www.mathongo.com
m
he
Be
À seo (tom JE)
‘Bol. Lat eg ve)
mr)
= oc (tan Ja) tan Gan YE) (an HE)
BR
OCT CRT OT
Portero ro]
E A Se
E
are)
fen
claro
=
Bel Lat y =
Bol Lab y = con a win? (7) = con 2 (ala af
pt us
Leu à À cartes À ot
|. et Role (ue) mt a + He
pensent]
|
A rea ms
rec
COTON
Bok Ley = 2x a de yt
&
LÉ. 4
2 1 0 a xf
|: 0. =
CT)
Item me vert po
2), meet
a
Men /)=|e—theaR
To prove: fía) da nok diferen at = L
Pa Lon DL lO)
pozo
=
Lt Mand Derio = Mr) = Je
NES En
m
7)
From 40) 254 (AD) ur) O
£6) a nob Siento ot x= 1
Note. In problems on Limit of Modules function, and Desa
Seaton (Le, pronta Inter Funcion), wa havo to find both at
Danae ad ight hand Hani (vo ha ed ls concept lio
om men in Er 52)
10. Prove Ghat the greatest Anleger function fined Dy
(We ne ot Bad (1) ns 1 (1) bees mot ea)
Didierentiabiiy ats =2
Polting = 2in 0) fC)» A] = 2
ah Hand date = 1/'C = im LOL zu, EA
Pr
=:
PE
E — ul exist,
>
[Giana amiante ot de
Noten Fat — e esx CHOR on ns
RD Sharma Solutions, Previous Year Papers)
15, Formula Sheets & much more
Exercion 6.3
2. BOO
Te
Sol Givens + y= in
Diterenining het slds wert. wo ave
a
a on, t
Lit Lee ue
a
= Saivesion=
A
Bol Given: ay + y = tana + y
nd ol e
À
fared
Ari pdt rs
RC A
Erre
Bey, «of
4
A 3
a "aa
nee
fy vt
Beas = fon
Girenıx = 99" 100
Difrentaiag bok des werk 3)
nee are
Bee boo peu
a
medias
Sol. Givens a
Duron ag beh aide mr x
a Al ee
La Lo
ol Eno loa
= 2007 067 Ÿ a [2 Ly 1) =
vum $ nota) >
- SN Y
o oa A
%
= da y „A
A
di rs - um
ates ont y ok,
Bo. Givens sn" = » Gay = 1
Dafererncag bo
in tig wann GE = 20280 « sc
free
Seb LE axes
Ss Pen
EP. 2
fn a ER,
a en er
& 5 La
e oo Deh.
4 logs
Be Lu y og
= 2e De og)
Fae +de à Ge gen Be singe
= «8 + 6 log 2
Find the second order derivatives of the functions given in
ia Oto 38.
“een.
Sol. Let y= enn Be
Erd muss ke parer
4 ‘
we cone aha bent on fe See ane
ros 5 dele
Los se
‘Again appli Produce Bodo of deren
A GAS ove Ad at)
a cli hin he ce he
CON NON ARE TE CT
= Bean make + 5 oak une)
nn = 24a)
Sir cos B= 12 tn Bh
1, ot oon de,
Bol. Let 9 = cos By
da
de Ru ur
“e 2 Ad
ec.
= = di in De 24 où De. AB
Ea
ain il ws
ea (a wo
li “a _
Arena,
de
=
= do og)
- ı s
Der "die:
is émet mr. 5)
5 con x= sia prove hat Foy = 0)
ee ge
- Fa
= Aa
fa 4
1 di 2
(27)
mo)
spokes nsw ont AY tar € eme
a Gry Aron 6
|
A
a ahnen une 00,
ES
ts
Br. ~ 4 un
LdC.
“LA
re
Sede min ame ne ee
en y Bate — A 0 — Brno Am e
TA
ee a
er
ee y logo dogo e D
a yoga Ds ge Vand og lm
22)
eo
: La Le, SF à
md ot one
1. Very Rallo» Gheowem Sor fi) =x! + 26-8, € À 0.
el. Gls fi) da e A
Here fi) l a pyme! faction off depres M.
ie) a than od derivable rare Le, en
ec FH) de continuous Sa the closed terval [=
durable in open Interval 4, 2.
DEEE EEE
Peitiog à = 2 la 0) FR) = 4 4 8 = 0)
TE)
A A ete
TMS
Bas ne O 2
A A 4, xf
= el pen nae (a, 2
(Genis e Ral Encore fruc
Res Pheorn ie veros
camino 1 Rela thcrem i plicable ta any of the flowing
emotion. Con pou y some lag bo the covers of all
‘heowem ren Shoes ecxmpled?
CD me M 1, DU) maes al 2
i) 16) == 1 D
Sel) Ge) = lr se, 9 E)
Co ms [el netos tho pases ter <3)
‘We Know that cta fc la] a ous a a tha
Intogor (Sea Ex. 16, paro 166, NCERT, Part 1). Hace
FE) = a Stat log between 5 and 9 Le.
cents aha = 6 3 = ends = 8 ond Bono Anni
a eel terval] al es ct dra cs
Pato 2k, = im, ELE
ma
(i Wolter iit ir RCA eme)
D ena
eee
ret
A Wr anf
ET
el
Pom
20 0 ei
ren Gi sd LLO =O.
Fe) = ON male a epa intra ober than neg
Fe
Ge f= bl bra zn
ere when of pet rag amd)
Pit me, 6) me = tm € = 0 dom nt blag top ter 2,
A A
Satin.
If ES,5 + R laa dioectiadio funeton sod 6) desa
ot vale eurer, en prove that 1-6) 1%.
Given: [ 6, 6) + E Sa a differentible funtion Le, f
onen ner (6, eo eed pos Ir
Beil
To pora (Yo
paie CS = 9)
From lend GF aX ch tro condos of nl Thera rs
sete.
‘Thre exis ot ste ito th end tea (= 6, Beh
fio» +.
de, PO +0 ihe FN venal Coal =e) bent
A A But thn cb 10
rn tht 16) don na van enti.
Ou ppt in) Le, [CD =f) wong
os
de Verily Mean Value Thaorem 1 fa) = 27 = de = 3 I de interval
Ea where e 1m Da
el, trans /6) = 2 — de = in the Intaral la, where a = 1 und
1 intr, 4) Er)
= «men ner,
1. LMM de vito
8. Veriy Mean Vals Theorem if fs) =? 0:2 = Ar im fh Interval
19 3] where a = 1 and bm8, Find ak 0 (1,3) for whieh
OS
Sol. Gin UI mae 0
ACL D 0. tate
nie [3
A ob a (dde 5 amie Ce
coms ad Gale prie Les m te a in m9}
enn 6) radin Go cmd nore! [13] denial Sa
(Ma, sila Toor fe mi
OA
lela - 3
men ee - 2
Te re re EC
EP DE
E pie and be (0.
& Emnine tho spplicablliy of Mean Velua Thoorem forall
{ho three fonctions being given below:
FO = bd fore 15,0) Die = Kel fore 6 3,3
= à a DD
Bel) Reproduce solution of @. No. 20 upto een. (D)
‘oth condone of LMLYZT. ve mot anti.
MI da oo to (¿JD to EE
GE) Reprodee mon of Qi. 25199 or. GO rpg 1,
A 6/019 by - (Wid lag
D: anal
Bay conan A
MVT, sh mat apodo 1/09 2 el fore ES 2
CRETE =)
Moro fc faa pata Kane Bros BL
"Tarot fi) a antun and derma eyarpnbane Les
en th mal line (==, =),
Maceo (a) I eankinun I tha led ftorral (1, 2] aaa
era a open ar (1, 2.
Beth camitims of Moen Valoe Thaerem are ated.
From D, fe) = 2e
Pt sa 6 file
Fran), fle)=/{l) 11 CN
a
Atay nifty
= 932 = re Apo nie)
= O30 = te EN Gee 9) = STP de BP Oe
2 at a sod 5
Sel La yee à etx = in
Y oc ot £ ain 46m À om
: 8 ent Lu À
EZ
ee x un d
Bao» tar 2 ut)
a
sean PTT)
Taking De of WA des of) me nova
A ¥en ga)
Dices tah ld wit. o bo
ey 4
18m ag tog Le
1 mn dinno rende]
En
a
or 4 FL fia)
Libia]
& 00 (a as + eb sn.) for somo onastante o and e
Bol LA y = om (a 18 2 + D dis) Be mmo mms a ond
h à
dias sense
"|
LE un ERA « à sd
7 4;
D nee art, Seule ME
re ae
ee
en
nee
do
E
een
Bacon
bo fe. dd
fer testar do
nr 0 en
=
E fe cost on 9 = 27 i matt}
en an
Tail an ie 8
Men
2.
Daye Pd
SE Br
ST DD og
A
> E iaa
iting be val fon AC 9)
ating ths salu i ea.
Dra.
Dd raro
PG e
Sol ety = a? + 6-0 rie > 3
ation, er tres (ON LUGO we (CUM +10)
=
Den 0m aa reel
Tag logs of Both sos, wo havo
gr bg G3" = x (= 9) loge = x eg ml
pag um de, dE Aw = £
ps
Bros
ad ur
feb Goo ya rt eat
Y Aa
EN) Aer ey
[ EINE ee]
4
« ques
ı
Faros
ala e
34 Weyiay oy Vus 8-1 <> <1, prom that
a
æ
CRC
HENAO
157)
Th 16 0) + (y= =e, to me o > 0; prove Bat
Piling Prien)
er
a ee de
Th et Senden meer Epes ale
acia
on
een
er, a
(hs har cd US een Era lt pent oid
vice ot $2)
Dilantin boc aden of) wat ES a
E
mine Que
Ea (entrent) ea à =)
ea)
‘ N
menge)
D
Y. Moa
de xd tc wi
or ls dd nun, m
a
es
. (DOS e
wo a6
in ano
are) = 0
À pl dal tw 0 nd (10) = 0
ies davon deren OF 70) 08 à 0
Toe ten SOTO SB
EL + à.
ce i wD)
D 20 290 -» On pate «= 0
oe ce. A
(On patting = = 0)
VAIO ne
2 ff) is der ot = Bland ("d= sei
Fram (o) as (eh Y) orate à
2510 dla 6 lu < Gnd A
19, eig mathemston adoro, ro at ie) = =!
ann
au dam
natn del maes
à A
¡TA
[ns aros. Zoe]
cea
o ne
A sin alee) À
llo A A sin ale) LA
a
+ teal oe fi a SE
A
may (448)
= Go Ape do a
Dias pots ey 2A + EB
eer
a a mu fre rena
ee en
D nt Arc story bo pola?
Ya Gers ctl dh at tee
To ecm, tw tke (9 2 TE ET Ej
Lat ne pt ech ocre niin moder so! to 0 Le
locos Seien give By (y
Le, fi)= 8-2 te 221 un)
Ar 10202 u
229 fr x22 i)
New the three valuon of f(@) given ky (i), Li) and ie) ara
rolpnomlal funeiione und conatast fexctlon und haneo are
‘Connie un decree fr al el van a expt posi et
ho parta pain x = Lund == 2 “er
To examine comtistey sta = 1
DRE oly 4 Bra
Br:
A O A a
> à
A
PC OR A
FE) da cola et = 1
To Game dent = = à
Lan Hen art = 7) = ha =D
am
1
Beso >
a
[By (wed 10) = me were)
| sin
Pulga nh 48 m1
an een (een
ing Fe) eats end 2 6) à Em (= 11
Fi i continus at = = 2 et)
Fo Commins Soria at 2
PPT)
= le Fos
Ma dire)
0 5 mob decenio où 2
From (0) (7) and (UE), me ca any Uk) da cantina
{mal values of Le, conteos ere.
From (6), (il) andl (la), wa eam nay thet fie) ts not
into nt eme Ev points € = Vand = 2 on tho real
Fo ae = 00) = 8) We — ne) RC) (= me)
= (ma = mB) fle) de = nel) 4 (= rs) MC)
FO ant G0, vo have LER. = RES,