Question Question Bank Bank US05FBCA01- US05FBCA01- Operations Operations ResearchResearch
PagePage
1414
of of
2424
3) Max z=3x3) Max z=3x
11+5x+5x
22
xx
11+ 2x+ 2x
22 ≤≤ 2000 2000
xx
11+ 2x+ 2x
22≤≤ 1500 1500
xx
22≤≤ 600 600
xx
11, x, x
22≥≥ 0 0
23.23.A company produces two articles X and Y. These are two departments through which theA company produces two articles X and Y. These are two departments through which the
articles are processed assembly and finishing. The potential capacity of the assemblyarticles are processed assembly and finishing. The potential capacity of the assembly
department is 48 hours a week and that of the finishing department is 60 hours a week.department is 48 hours a week and that of the finishing department is 60 hours a week.
Production of each of X requires 2 hours of assembly and 4 hours of finishing. Each unitProduction of each of X requires 2 hours of assembly and 4 hours of finishing. Each unit
of Y requires 4 hours in assembly and 2 hours in finishing department. If profit is Rs.6 forof Y requires 4 hours in assembly and 2 hours in finishing department. If profit is Rs.6 for
each unit of X and Rs.7 for each unit of Y, find out the number of units of X and Y to beeach unit of X and Rs.7 for each unit of Y, find out the number of units of X and Y to be
produced each week to obtain maximum profit. (use graphical method).produced each week to obtain maximum profit. (use graphical method).
UNIT 2UNIT 2
1.1.
( ( ))
11 22
11 22 11 22 11 22
1 M1 M aaxxiimm iizzee 33 55
SSuubbjjeecctt ttoo 44,, 33 22 1188,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥
2.2.
( ( ))
11 22
11 22 11 22 11 22
22 MM aaxxiimm iizzee 77 55
SSuubbjjeecctt ttoo 22 66,, 44 33 1122,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥
3.3.
( ( ))
11 22
11 22 11 22 11 22
3 M3 Maaxxiimmiizzee 55 77
SSuubbjjeecctt ttoo 44,, 1100 77 3355,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥
4.4.
5.5.
( ( ))
11 22
11 22 11 22 11 22
55 MMaaxxiimmiizzee 33 44
SSuubbjjeecctt ttoo 66,, 22 44 2200,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥
6.6.
( ( ))
11 22
11 22 11 22 11 22
66 MM aaxxiimmiizzee 55 33
SSuubbjjeecctt tto 3o 3 55 1155,, 55 22 1100,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥
BIG M MethodBIG M Method
7.7.
( ( ))
11 22
11 22 11 22 11 22
11 MM aaxxiimm iizzee 33
SSuubbjjeecctt ttoo 22 22,, 33 33,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = −−
+ + ≥ ≥ + + ≤ ≤ ≥≥
8.8.
( ( ))
11 22 33
11 22 33 11 22 11 22
22 MM aaxxiimm iizzee 33 44
SSuubbjjeecctt ttoo 33 22,, 55 22 33,, ,, 00
= = − − ++
− − + + + + ≥ ≥ − − − − ≤ ≤ ≥≥
Z Z x x x x xx
x x x x x x x x x x x x xx
9.9.
( ( ))
11 22 33
11 22 33 11 22 22 33 11 22 33
3 M3 Maaxxiimmiizzee 55 22
SSuubbjjeecctt ttoo 22 22 22,, 33 44 33,, 33 55 ,, ,, 00
= = − − −−
+ + − − ≥ ≥ − − ≥ ≥ + + ≥ ≥ ≥≥
Z Z x x x x xx
x x x x x x x x x x x x x x where where x x x x xx
10.10.
( ( ))
11 22 33
11 22 33 11 2 3 2 3 11 22 33
4 M4 Maaxxiimmiizzee 22 99
SSuubbjjeecctt ttoo 44 22 55,, 33 22 44,, ,, ,, 00
= = − − − − −−
+ + + + ≥ ≥ + + + + ≥ ≥ ≥≥
Z Z x x x x xx
x x x x x x x x x x x x x x x x xx
( ( ))
11 22
11 22 11 22 11 22
44 MMaaxxiimmiizzee 33 22
SSuubbjjeecctt ttoo 22 55,, 33,, ,, 00
Z Z x x xx
x x x x x x x x x x xx
= = ++
+ + ≤ ≤ + + ≤ ≤ ≥≥