medieval European mathematics

dhayjanebananlopez 6,726 views 20 slides Sep 10, 2019
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

ABOUT MEDIEVAL EUROPEAN MATHEMATICS HISTORY


Slide Content

Asidefrom144being
the only square
Fibonaccinumber.Itis
alsothe12thFibonacci
number.Notethat12is
thesquarerootof144.
The first seven digits of the golden
ratio (1618033) concatenated is
prime!

❖BoethiusandhisQuadrivium
❖Nicomachu’sIntroductiontoArithmetic
❖LeonardoPisanoBigollo(Fibonacci)
❖ThomasBradwardine
❖NicoleOresme
❖GiovannidiCasali

MedievalMathematics
muchmathematicsandastronomyavailablein
the12thcenturywaswritteninArabic,theEuropeans
learnedArabic.Bytheendofthe12thcenturythebest
mathematicswasdoneinChristianItaly.Duringthis
centurytherewasaspateoftranslationsofArabic
workstoLatin.Latertherewereothertranslations.
Arabic→SpanishArabic→Hebrew(→Latin)Greek→
Latin.
EuropehadfallenintotheDarkAges,inwhich
science,mathematicsandalmostallintellectual
endeavourstagnated.Scholasticscholarsonlyvalued
studiesinthehumanities,suchasphilosophyand
literature,andspentmuchoftheirenergiesquarrelling
oversubtlesubjectsinmetaphysicsandtheology,such
as"Howmanyangelscanstandonthepointofa
needle?"

❖BoethiusandhisQuadrivium
Boethius
wasoneofthemostinfluentialearlymedieval
philosophers.Hismostfamouswork,TheConsolation
ofPhilosophy,wasmostwidelytranslatedandreproduced
secularworkfromthe8thcenturyuntiltheendoftheMiddle
Ages
Quadrivium
(plural:quadrivia)isthefour
subjects,orarts(namelyarithmetic,
geometry,musicandastronomy),
taughtafterteachingthetrivium.The
wordisLatin,meaningfourways,
anditsuseforthefoursubjectshas
beenattributedtoBoethiusor
Cassiodorusinthe6thcentury.

Nicomachus of Gerasa
wasanimportantancientmathematicianbestknownforhisworks
IntroductiontoArithmeticandManualofHarmonicsinGreek.HewasborninGerasa,
intheRomanprovinceofSyria,andwasstronglyinfluencedbyAristotle.Hewasa
Neopythagorean,whowroteaboutthemysticalpropertiesofnumbers.
❖Nicomachu’sIntroductiontoArithmetic

❖LeonardoPisanoBigollo(Fibonacci)
LeonardoPisano
isbetterknownbyhisnicknameFibonacci.
FibonacciwasanItalianmathematicianfromthe
RepublicofPisa,consideredtobe"themosttalented
WesternmathematicianoftheMiddleAges".The
nameheiscommonlycalled,Fibonacci,wasmadeup
in1838bytheFranco-ItalianhistorianGuillaumeLibri
andisshortforfiliusBonacci.

Fibonaccisequenceisaseriesofnumbersinwhichthenextnumberiscalculated
byaddingtheprevioustwonumbers.Itgoes0,1,1,2,3,5,8,13,21,34,55andsoon.Though
thesequencehadbeendescribedinIndianMathematicslongago,itwasLeonardo
FibonacciwhointroducedthesequencetoWesternEuropeanmathematics.Thesequence
startswithF1=1inLeonardoLiberAbacibutitcanalsobeextendedto0andnegative
integerslikeF0=0,F1=1,F2=2,F3=3,F4=4,F5=5andsoon.
Example:
Thecommondifferenceof
1,3,5,7,9,11,13,15is2.The2isfoundby
addingthetwonumbersbeforeit(1+1)
Thecommondifferenceof
2,5,8,11,14,17,20,23is3.The3isfoundby
addingthetwonumbersbeforeit(1+2).

The Rule
The Fibonacci Sequence can be written as a "Rule" (Sequences and Series).
First, the terms are numbered from 0 onwards like this:
So term number 6 is called x
6(which equals 8).
So we can write the rule:
The Rule is x
n= x
n-1+ x
n-2
where:
•x
nis term number "n"
•x
n-1is the previous term (n-1)
•x
n-2is the term before that (n-2)

Makes A Spiral
When we make squares with those widths, we get a nice spiral:
Do you see how the squares fit
neatly together?
For example 5 and 8 make 13,
8 and 13 make 21, and so on.
This spiral is found in
nature!

➢FIBONNACI SEQUENCE WAS THE SOLUTION OF A RABBIT
POPULATION PUZZLE IN LIBER ABACI
InLiberAbaci,Leonardo
considersahypotheticalsituationwhere
thereisapairofrabbitsputinthefield.
Theymateattheendofonemonthand
bytheendofthesecondmonththe
femaleproducesanotherpair.Therabbit
neverdie,mateexactlyafteramonth
andthefemalesalwaysproducesapair
(onemale,onefemale).Thepuzzlethat
theFibonacciposedwas:howmanypair
willtherebeinoneyear?Ifonecalculates
thenonewillfindthatthenumberof
pairsattheendofthenthmonthwould
beFnorthenthFibonaccinumber.Thus
thenumberofrabbitpairsafter12
monthswouldbeF12or144

TheFibonaccinumbersoccurinthesumsof“shallow”diagonalinPascal'striangle
startingwith5,everysecondFibonaccinumberisthelengthofthehypotenuseofaright
trianglewithintegerssides.Fibonaccinumberarealsoanexampleofacompletesequence.
ThismeansthateverypositiveintegerscanbewrittenasasumofFibonaccinumbers,
whereanyonenumberisusedonceatmost.Fibonaccisequenceisusedincomputer
scienceforseveralpurposeliketheFibonaccisearchtechnique,whichisamethodof
searchingasortedarraywithaidfromthesequence.

Twoquantitiesaresaidtobeingoldenratioif(a+b)/a=a/bwherea>b>0.itsvalueis(1=root5)/2
or1.6180339887…Goldenratiocanbefoundinpatternsinnaturelikethespiralarrangementofleaves
whichiswhyitiscalleddivineproportion.Theproportionisalsosaidtobeaestheticallypleasingdueto
whichseveralartistsandarchitects.TheFibonacciSequenceandthegoldenratioareintimately
interconnected.TheratioofconsecutiveFibonaccinumbersconvergeandgoldenratioandtheclosed
fromexpressionfortheFibonaccisequenceinvolvesthegoldenration,
Example:

The Actual Value
The Golden Ratio is equalto:
1.61803398874989484820... (etc.)
The digits just keep on going, with no pattern. In fact the Golden Ratio is known to be an Irrational Number,
and I will tell you more about it later.
Formula
We saw above that the Golden Ratio has this property:
ab= a + ba
We can split the right-hand fraction like this:
ab= aa+ ba
abis the Golden Ratio φ, aa=1 and ba=1φ, which gets us:
φ = 1 + 1φ
So the Golden Ratio can be defined in terms of itself!
Let us test it using just a few digits of accuracy:
φ=1 + 11.618
=1 + 0.61805...
=1.61805...
With more digits we would be more accurate.

➢FIBONACCI NUMBERS CAN BE FOUND IN SEVERAL BIOGICAL
SETTING
Apartfromdronebees,
Fibonaccisequencecanbefoundin
otherplacesinnaturelikebranchingin
trees,arrangementofleavesona
stem,thefruitletsofapineapple,the
floweringofartichoke,anuncurling
fernandthearrangementofpine
cone.Alsoonmanyplants,thenumber
ofpetalsisaFibonaccinumber.Many
plantsincludingbuttercupshave5
petals;liliesandirishave3petals;
some delphiniumshave8;corn
marigoldshave13petals;someasters
have2whereasdaisiescanbefound
with34,55oreven89petals.

ThomasBradwardine,(bornc.1290—diedAug.26,1349,
London),archbishopofCanterbury,theologian,andmathematician.
BradwardinestudiedatMertonCollege,Oxford,andbecameaproctor
there.About1335hemovedtoLondon,andin1337hewasmade
chancellorofSt.Paul’sCathedral.Hebecamearoyalchaplainand
confessortoKingEdwardIII.In1349hewasmadearchbishopof
CanterburybutdiedoftheplaguesoonafterwardduringtheBlack
Death.
Bradwardine’smostfamousworkinhisdaywasatreatiseon
graceandfreewillentitledDecausaDei(1344),inwhichhesostressed
thedivineconcurrencewithallhumanvolitionthathisfollowers
concludedfromitauniversaldeterminism.Bradwardinealsowrote
worksonmathematics.InthetreatiseDeproportionibusvelocitatumin
motibus(1328),heassertedthatanarithmeticincreaseinvelocity
correspondswithageometricincreaseintheoriginalratioofforceto
resistance.ThismistakenviewheldswayinEuropeantheoriesof
mechanicsforalmostacentury.
THOMAS BRADWARDINE

THOMAS BRADWARDINE
Bradwardine’s
mostfamousworkinhis
daywasatreatiseon
graceandfreewillentitled
DecausaDei(1344)

❖NicoleOresme
NicoleOresmealsoknownasNicolasOresmewasa
significantphilosopherofthelaterMiddleAges.Oresmewasa
determinedopponentofastrology,whichheattackedonreligious
andscientificgrounds.InDeproportionibusproportionum(On
RatioofRatios)Oresmefirstfixedexaminedraisingrational
numbertorationalpowersbeforeextendinghisworktoinclude
irrationalpower.
Significantly,Oresmedevelopedthefirstproofofthe
divergence(isaninfiniteseriesthatisnotconvergent)oftheharmonic
series(isthedivergentinfiniteseries:σ
??????=1

??????−1=1+
1
2
+
1
3
+
1
4
+⋯
Hisproof,requiringlessadvancedmathematicsthatcurrent“standard”
testsfordivergence(forexample,theintegraltest(ismethodusedto
testinfiniteseriesofnon-negativetermsforconvergence),beginsby
nothingthatforanynthatisapowerof2,therearen/2-1termsinthe
seriesbetween1/(n/2)and1/n.

❖GiovannidiCasali
Giovanni(orJohannes)diCasali(ordaCasale;
c.1320-after1374)wasafriarintheFranciscanOrder,
anaturalphilosopherandatheologian,authorofworks
ontheologyandscience,andapapallegate.
About1346hewroteatreatiseDevelocitate
motusalterationis(ontheVelocityoftheMotionofthe
Alteration)whichwassubsequentlyprintedinVenicein
1505.Inithepresentedagraphicalanalysisofthe
motionofacceleratedbodies.Histeachingin
mathematicsphysicsinfluencedscholarsatthe
UniversityofPadulaanditisbelievedmayhave
ultimatelyinfluencedthesimilarideaspresentedovertwo
centuriesbyGalileoGalilie.

REFERENCES
•https://Leonardo-newtonic.com/fibonnaci-facts
•GiovannidaCasale’,Enciclopedieonline,Treccani
•MaartenvanderHeijdenandBertRoest,’Franaut-j’,Franciscan
AUTHORS.13
th
-18
th
Century:ACatalogueinProgress
•MarshallClaget.TheScienceofMechanicsintheMiddle
Ages.(Madison:Univ.ofWisconsinPr.,1959).pp332-3,382-
391.644