References S. Razdan , H. Gupta and A. Seth, “Performance analysis of network intrusion detection systems using j48 and naive bayes algorithms,” 2021 6th Int. Conf. Converg . Technol. I2CT 2021 , pp. 1–7, 2021. Z. Ahmad, A. S. Khan, C. W. Shiang , J. Abdullah and F. Ahmad, “Network intrusion detection system: A systematic study of machine learning and deep learning approaches,” Trans. Emerg . Telecommun . Technol. , vol. 32, no. 1, pp. 1–29, 2021. M. Data and M. Aritsugi , “T-DFNN: An incremental learning algorithm for intrusion detection systems,” IEEE Access , vol. 9, pp. 154156–154171, 2021. R. Panigrahi , S. Borah, A. K. Bhoi , M. F. Ijaz , M. Pramanik et al. , “A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets,” Mathematics , vol. 9, no. 7, 2021. D. Chou and M. Jiang, “A survey on data-driven network intrusion detection,” ACM Comput . Surv . , vol. 54, no. 9, pp. 1–36, 2022. S. Lee, A. Abdullah, N. Jhanjhi and S. Kok , “Classification of botnet attacks in IoT smart factory using honeypot combined with machine learning,” PeerJ Comput . Sci. , vol. 7, pp. 1–23, 2021. Z. K. Maseer , R. Yusof , N. Bahaman, S. A. Mostafa , and C. F. M. Foozy , “Benchmarking of machine learning for anomaly based intrusion detection systems in the CICIDS2017 dataset,” IEEE Access , vol. 9, pp. 22351–22370, 2021. P. Dini and S. Saponara , “Analysis, design, and comparison of machine-learning techniques for networking intrusion detection,” Designs , vol. 5, no. 1, pp. 1–22, 2021.