Modeling Factual Claims with Frames

chengkaili 36 views 1 slides Sep 21, 2019
Slide 1
Slide 1 of 1
Slide 1
1

About This Presentation

In this paper we introduce an extension of FrameNet for structured and semantic modeling of factual claims and an adaptation of the frame detection algorithms in Open Sesame for identifying frames and extracting frame elements from text. This claim modeling capability can be leveraged in assisting a...


Slide Content

Modeling)Factual)Claims)with)Frames
The$Innovative$Database$and$Information$Systems$Research$Laboratory$(IDIR)
Fatma%Arslan,%Damian%Jimenez,%Josue%Caraballo,%Gensheng%Zhang,%Chengkai%Li
✻Agrowinginterestinautomatingvariousfact!
checkingsteps.
✻WeintroduceanextensionofFrameNet(Baker
et.al.,1998)forstructuredandsemantic
modelingoffactualclaims.
✻Withsuchmodelingcapability,wecancapture
variousaspectsofafactualclaim;thedomain
andtopicoftheclaim,theentitiesinvolvedand
theirrelationships,quantities,comparisons,
aggregatestructures,andsoon.
✻Thisclaimmodelingcapabilityisusefulfora
varietyofstepsforautomatingfact!checking,
e.g.,detectingfactualclaims,matchingclaims
withfact!checks,translatingclaimsto
structuredqueries,andsoon.
Introduction
Figure:VoteandOccupyrankframesfromourframecollectionalong
withtheirLUs.AnexemplifiedsentenceforvoteandrankLuswith
color!codedframeannotationsbelow.Labelsbeloweachsentenceare
framespecificframeelements(FEs).
Modeling)Factual)Claims
Preliminary*Experiments:*Claim*Detection
Defining'New'Frames
Table:Framepredictionperformance,intermsofPrecision(P),Recall(R)andF!measure(F1).Whereavg
w
denotesthe
weightedaverageofcorrespondingmeasureacrosstenframes.
Conclusions)and)Future)Work
Task:Identifyingfactualclaimstobefact!checked.
✻Utilizedopen!sesame
2
forframeidentification.
✻RetraineditonFrameNet1.7datasetalongwithannotated
sentencesforthreenewframes.
1.#https://www.politifact.com#2.#https://github.com/swabhs/open!sesame%%%3.%http:%//www.sharethefacts.org/%
✻Labelledfactualclaimsfrom“SharetheFacts”dataset
3
for
10frames.
✻Evaluatedopen!sesame’sperformanceforclaimdetection.
✻Collectedfact!checkedclaimsfromPolitiFact
1
,
✻Examinedasubsetoftheseclaimsonebyone.
✻Groupedclaimssimilarinnature.
✻Creatednewframesforeachclaimgroupifit
doesn’talreadyexistinFrameNetcollection.
✻20frames(13newlycreated)
✻900labelledfactualclaims.
✻UniquenessoftraitandVoteframes
performedinlinewithotherpre!
establishedframes.
✻Model’sperformancecanbeimproved
byfeedingmoretrainingdata.
✻Developedaframeannotatortoolto
annotatemoredataforfurther
experiments.
Oppose&and&Support&Consistency&Frame
ThisresearchhasbeenpartiallysupportedbyNationalScienceFoundation
grant#1719054andasubawardfromtheDukeTech&CheckCooperative
(fundedbyTheKnightFoundation,theFacebookJournalismProjectand
theCraigNewmarkFoundation).Anyopinions,findings,andconclusions
orrecommendationsexpressedinthispublicationarethoseofthe
authorsanddonotnecessarilyreflecttheviewsofthefundingagencies.
Funding: